Оценка параметров активной широкополосной рамочной антенны по шумовым свойствам

Ю. Г. Антонов, С. В. Балландович, Г. А. Костиков Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) yuryant@yandex.ru, sssr2123@yandex.ru, gakostikov@gmail.com

Аннотация. Дана оценка проигрыша в отношении сигнал-шум активной широкополосной средневолновой приемной рамочной антенны из-за воздействия шумов входного усилителя при варьировании следующих параметров рамочной антенны: число витков, эффективная относительная магнитная проницаемость сердечника, входные сопротивление и емкость усилителя.

Ключевые слова: приемная рамочная антенна; широкополосная ферритовая антенна; проигрыш в отношении сигнал-шум; КПД ферритовой антенны

I. Введение

Рамочные антенны с ферритовыми сердечниками для средневолнового диапазона частот хорошо изучены и широко представлены в литературе, например, в [1, 2]. Кроме того, в [1, 3 и 4] дана методика расчета шумовых характеристик антенн. Есть работы по оценке отношения сигнал-шум ферритовых антенн, например, [5]. В настоящей работе рассматривается рамочная антенна прямоугольной формы с ферритовым сердечником, параметры которой оцениваются по критерию минимума проигрыша в отношении сигнал-шум из-за внутренних шумов приемника. Для оценки проигрыша в отношении сигнал-шум учитываются уровень электромагнитного приемной антенны шума вблизи [3, 6], ШVМ сопротивления, характеризующего потери ферритовой рамочной антенны [5], и шумы усилителя [7]. Рассмотрение рамочной антенны на основе шумовой модели позволило подобрать наилучшие ее параметры (габаритные размеры, число витков, эффективную магнитную проницаемость), при которых минимизирован проигрыш в отношении сигнал-шум из-за внутренних шумов приемника.

II. МАТЕМАТИЧЕСКАЯ МОДЕЛЬ АКТИВНОЙ РАМОЧНОЙ АНТЕННЫ С ФЕРРИТОМ

А. Параметры рамочной антенны с ферритом

Действующая длина рамочной антенны [1, 2] $l d = k \cdot N \cdot S \cdot \mu_a$ зависит от многих параметров: N – числа витков, $S = a \cdot b$ – площади рамочной антенны, где a = 2 см и b = 10 см – ее стороны, μ_a – эффективной магнитной проницаемости ферритового сердечника и волнового числа $k = 2 \cdot \pi/\lambda$, где λ – длина волны. Индуктивность рамочной антенны и сопротивление излучения определяются формулами [1, 2]: $L = \mu_0 \cdot \mu_a \cdot N^2 \cdot S/l$, $Rr = 320 \cdot \pi^4 \cdot (N \cdot S/\lambda^2)^2 \cdot \sqrt{\mu_a}$, где μ_0 – магнитная проницаемость

вакуума, $l = 2 \cdot (a + b) - длина витка. Типичные значения$ ненагруженной добротности <math>Q катушек на феррите в средневолновом диапазоне частот от 60 до 120 [5]. Зададимся средним значением 90. Последовательное сопротивление потерь рамочной антенны *Rloss* легко оценить [5], как отношение реактивного сопротивления индуктивности $Xr = 2 \cdot \pi \cdot f \cdot L$ к добротности: *Rloss* = Xr/Q. Теперь задача оптимизации может быть сформулирована следующим образом: для заданного диапазона частот подобрать параметры антенны *N*, *a*, *b*, μ_a такие, при которых уменьшение отношения сигналшум из-за внутренних шумов приемника было бы минимальным.

В. Эквивалентная схема активной рамочной антенны

На рис. 1 приведена эквивалентная схема рамочной антенны с ферритовым сердечником, источником шума сопротивления потерь e_{loss} [2, 5] и малошумящего операционного усилителя (ОУ) с внутренними источниками шумов e_{noise} , i_{noise} , входной емкостью *С* и сопротивлением *Rin* [7].

Рис. 1. Эквивалентная схема активной рамочной антенны с ферритовым сердечником

С. Оценка среднеквадратического значения напряженности электромагнитного поля

Из рекомендаций международного союза по электросвязи (МСЭ) [6] следует, что в диапазоне частот от 150 кГц до 1,7 МГц, доминируют атмосферные радиошумы (для работоспособности системы будем

ориентироваться на максимальный уровень шума). Поэтому в работе учтены только они. Коэффициент шума приемной антенны (без учета других шумов) определяется как [6] $fa = Pn/k_b \cdot t_0 \cdot \Delta f$, $Fa = 10 \cdot lg(fa)$, где Pn мощность шума с выхода эквивалентной антенны без потерь, k_b – постоянная Больцмана, t_0 (К) – эталонная температура, Δf (Гц) – ширина полосы приемной антенны. Определив из справочника [6] значения Fa, можно найти соответствующие значения En для электрически короткого вертикального несимметричного вибратора над идеально проводящей Землей [6], дБ(мкВ/м):

$$En = Fa + 20 \cdot lg(f \cdot 10^{-6}) + B - 95,5,$$

где f – частота в Гц, $B = 10 \cdot lg(\Delta f)$. При использовании симметричного электрически короткого вибратора из приведенного выражения следует вычесть 3 дБ. В дальнейших расчетах оценка среднеквадратического значения напряженности вертикальной компоненты электрического поля вычисляется для $\Delta f = 1$ Гц (B = 0).

D. Оценка шумовой ЭДС на зажимах рамочной антенны

Произведение действующей длины антенны l_{d} на напряженность вертикальной компоненты электрического поля *En* есть ЭДС внешнего шума на клеммах антенны $\mathcal{E}r = l_{d} \cdot En$. Строго говоря, такая оценка справедлива, как следует из [6], лишь для вертикальной вибраторной антенны, однако погрешность в оценке максимального уровня шума будет незначительной.

E. Расчет шумовых напряжений, приведенных ко входу усилителя

Среднеквадратическое значение теплового шума сопротивления потерь, приходящееся на полосу $\Delta f =$ 1 Гц, оценивается традиционным способом $e_{loss} =$ $\sqrt{4 \cdot kb \cdot Tk \cdot \Delta f \cdot Rloss}$, где $Tk = 298^{\circ}$ K – температура сопротивления потерь (температура рамочной антенны). Рассмотрим малошумящие ОУ фирмы Analog device [7] на средневолновый диапазон частот и возьмем типичные значения (не рекордные) среднеквадратических шумовых напряжений и дробовых токов малошумящих ОУ (например, AD8610, OP37): $e_{noise} = 5$ нВ/ $\sqrt{\Gamma}$ ц, $i_{noise} =$ 1 пА/√Гц. Следует заметить, что в средневолновом диапазоне частот уровень шумов ОУ постоянен. Кроме того, учтем входные сопротивление и емкость ОУ: $R_{in} = 10$ кОм; C = 10 пф. Для того, чтобы привести среднеквадратические значения внешнего шума и шума входу ОУ найдем сопротивления потерь к соответствующий коэффициент передачи цепи (рис. 1):

$$Ku = \frac{\frac{R_{in} \cdot \frac{1}{j \cdot 2 \cdot \pi \cdot f \cdot C}}{R_{in} + \frac{1}{j \cdot 2 \cdot \pi \cdot f \cdot C}}}{j \cdot 2 \cdot \pi \cdot f \cdot L + Rloss + Rr} + \frac{\frac{R_{in} \cdot \frac{1}{j \cdot 2 \cdot \pi \cdot f \cdot C}}{R_{in} + \frac{1}{j \cdot 2 \cdot \pi \cdot f \cdot C}}$$

Запишем коэффициент передачи цепи для расчета среднеквадратического значения шумового напряжения на входе ОУ, вызванного дробовыми шумами ОУ:

$$Ki = \frac{1}{\frac{1}{R_{in}} + j \cdot 2 \cdot \pi \cdot f \cdot C + \frac{1}{Rr + Rloss + j \cdot 2 \cdot \pi \cdot f \cdot L}}$$

Теперь нетрудно найти среднеквадратическое значение напряжения внутренних шумов, приведенных к входу ОУ: $Vn_{op} = \sqrt{e_{noise}^2 + (e_{loss} \cdot |Ku|)^2 + (i_{noise} \cdot |Ki|)^2}$

и среднеквадратическое значение напряжения внешнего шума, также приведенного к входу ОУ: $V\varepsilon_{op} = \varepsilon r \cdot |Ku|$.

F. Проигрыш в отношении сигнал-шум

Проигрыш в отношении сигнал-шум определим традиционно, как отношение сигнал-шум с учетом внутренних шумов приемника к тому же отношению при гипотезе, что приемник не шумит: $Qloss = \frac{V \varepsilon_{op}}{\sqrt{V \varepsilon_{op}^2 + V n_{op}^2}}$.

III. ОЦЕНКА ПАРАМЕТРОВ РАМОЧНОЙ АНТЕННЫ

А. Частотная зависимость проигрыша в отношении сигнал-шум при различном числе витков рамочной антенны (до оптимизации параметров)

На рис. 2 приведена расчетная частотная зависимость проигрыша в отношении сигнал-шум из-за внутренних шумов приемника для разного числа витков в рамочной антенне с ферритом. При этом Q = 90, $\mu_a = 50$, $C = 10 \text{ n}\Phi$, Rin = 10 кOm. Во всех исследованиях ниже размеры сторон рамочной антенны фиксированы a = 2 см, b = 10 см. Здесь и далее оценка проигрыша приведена в дБ: $20 \cdot lg(Qloss)$.

Рис. 2. Частотная зависимость проигрыша в отношении сигнал-шум *Qloss* для разного числа витков в рамочной антенне

Проигрыш менее -0,1 дБ говорит о том, что уровень внешнего шума сильно превосходит уровни внутренних шумов усилителя, и поэтому последние практически не ухудшают отношение сигнал-шум. Кроме того, если проигрыш в отношении сигнал-шум сильно менее -0,1 дБ в рабочем диапазоне частот, то без потери качества для приемной системы можно уменьшить размеры ферритовой рамочной антенны. Для нерезонансной рамочной антенны с вышеуказанными параметрами наибольший проигрыш в отношении сигнал-шум, как следует из графиков, наблюдается в верхней части частотного диапазона. Причем, чем больше витков в рамочной антенне, тем в целом проигрыш в отношении сигнал-шум меньше, однако, в верхней части частотного диапазона при числе витков более 40 скорость падения проигрыша в отношении сигнал-шум резко возрастает из-за проявления дробового шума ОУ при росте реактивного сопротивления индуктивности. Далее оценку числа витков рамочной антенны проведем на максимальной частоте 1,7 МГц.

В. Оценка числа витков рамочной антенны при варьировании эффективной относительной магнитной проницаемости ферритовой антенны

Для верхней частоты рабочего диапазона 1,7 МГц построим графики для оценки числа витков N антенны, которое обеспечивает наименьшее значение проигрыша в отношении сигнал-шум из-за влияния внутренних шумов приемника. На рис. 3 приведена зависимость проигрыша в отношении сигнал-шум от числа витков в рамочной антенне для различных эффективных коэффициентов относительной магнитной проницаемости μ_a . Q = 90, f = 1700 кГц, C = 10 пФ, Rin = 10 кОм.

Рис. 3. Зависимость проигрыша в отношении сигнал-шум *Qloss* от числа витков в рамочной антенне для различных μ_a

Из графиков видно, что для каждого параметра μ_a имеет место свое наилучшее значение N. Причем, с уменьшением μ_a максимумы графиков смещаются вправо и требуют большего количества витков. В целом видно, что лучше иметь антенну с большим μ_a и меньшим количеством витков, так как проигрыш в отношении сигнал-шум при этом уменьшается. Для дальнейших исследований примем вполне реализуемое на практике значение $\mu_a = 50$.

С. Влияние емкости на работу рамочной антенны

На рис. 4 приведена зависимость проигрыша в отношении сигнал-шум от числа витков в рамочной антенне для различных значений емкости *C* на входе ОУ. $Q = 90, f = 1700 \text{ к}\Gamma\mu, \mu_a = 50, Rin = 10 \text{ к}OM.$

Рис. 4. Зависимость проигрыша в отношении сигнал-шум *Qloss* от числа витков в рамочной антенне для различных значений емкости *C*, пФ на входе ОУ

Изменение емкости от 10 п Φ (входная емкость ОУ) до 100 п Φ (подключение внешнего конденсатора), значительно меняет значение оптимального количества витков, например, при C = 60 п Φ – оптимальное значение витков в антенне на частоте 1700 кГц уменьшается до 16.

D. Частотная зависимость проигрыша в отношении сигнал-шум рамочной антенны с конденсатором

На рис. 5 приведена частотная зависимость проигрыша в отношении сигнал-шум при подключении конденсатора $C. Q = 90, \mu_a = 50, Rin = 10$ кОм, N = 16.

Рис. 5. Частотная зависимость проигрыша в отношении сигнал-шум при подключении конденсатора *С*, пФ

Из графиков видно, что наименьший проигрыш в отношении сигнал-шум одновременно на всех частотах диапазона наблюдается рассматриваемого при подключении конденсатора 60 пФ (входная емкость ОУ входит в это значение). Выравнивание кривой на графике означает, что антенна на любой частоте в заданном диапазоне будет работать одинаково эффективно с точки зрения минимума проигрыша в отношении сигнал-шум изза внутренних шумов приемника. Кроме того, из графиков видно, что подключение конденсатора с номиналом более 60 пФ делает рамочную антенну узкополосной из-за резонанса. Проигрыш в отношении сигнал-шум для узкополосных резонансных антенн существенно меньше, чем для широкополосных.

Е. КПД рамочной антенны

Зная сопротивление излучения и сопротивление потерь, можно оценить КПД рамочной антенны $\eta = Rr/(Rr + Rloss)$. На рис. 6 приведена частотная зависимость КПД $10 \cdot lg(\eta)$ в дБ. Q = 90, $\mu_a = 50$.

Рис. 6. Частотная зависимость КПД η ферритовой рамочной антенны

Следует отметить, что КПД ферритовой рамочной антенны не зависит от параметров цепей подключения к ОУ и является характеристикой исключительно самой рамочной антенны. Поэтому узкополосная ферритовая рамочная антенна и широкополосная на практике будут иметь один и тот же график частотной зависимости КПД.

F. Согласование по мощности и согласование по минимуму проигрыша в отношении сигнал-шум

Согласование по мощности означает равенство сопротивления излучения антенны и вхолного сопротивления усилителя. Однако для электрически малой ферритовой антенны это абсурдная ситуация, так как многократно сопротивление потерь превышает сопротивление излучения антенны, и такое согласование невозможно в принципе. Если ориентироваться на критерий минимума коэффициента отражения, то условие согласования можно сформулировать, как равенство усилителя сопротивления входного и суммы сопротивлений излучения и потерь вместе взятых. На рис. 7 приведены частотные зависимости проигрыша в отношении сигнал-шум из-за внутренних шумов приемника для различных входных сопротивлений малошумящего усилителя. $Q = 90, \ \mu_a = 50, \ C = 60 \ \Pi \Phi$, N = 16.

Рис. 7. Частотная зависимость проигрыша в отношении сигнал-шум *Qloss* для различных входных сопротивлениий *Rin* усилителя

Из графиков видно, что при входном сопротивлении усилителя Rin более 10 кОм проигрыш в отношении сигнал-шум не меняется (кривые сливаются). Эти кривые являются результатом проведенной оптимизации. При входном сопротивлении усилителя Rin менее 10 кОм наблюдается существенное увеличение проигрыша в отношении сигнал-шум. И наконец, если предположить, что входное сопротивление усилителя на любой частоте будет равно сумме сопротивлений излучения и потерь рамочной антенны Rin = Rr + Rloss, то есть имеет место режим согласования по мощности, то проигрыш в отношении сигнал-шум будет гораздо больше, чем в других случаях (см. непрерывную кривую).

IV. Выводы

Внедрение малошумящего усилителя с высоким входным сопротивлением непосредственно в конструкцию рамочной антенны позволяет многократно (десятки дБ) уменьшить проигрыш в отношении сигнал-шум из-за влияния внутренних шумов приемника по сравнению с разнесенными антенной и усилителем с низким входным импедансом, например, стандартным 50 Ом.

Оценка проигрыша в отношении сигнал-шум из-за влияния внутренних шумов приемника позволяет обоснованно минимизировать размеры приемной рамочной антенны с ферритом. Например, задавшись проигрышем не более -0,1 дБ, можно найти минимальные габаритные размеры антенны, соответствующие заданному проигрышу.

Подключение конденсатора к активной рамочной антенне с ферритом позволяет провести частотную коррекцию и выровнять проигрыш в отношении сигналшум из-за внутренних шумов приемника на всех частотах рабочего диапазона. Таким образом, с точки зрения указанного критерия, активная антенна будет работать с одинаковой эффективностью во всем частотном диапазоне. Коррекцию следует проводить одновременно по двум параметрам (при фиксации других): значению подключаемого конденсатора и числу витков в антенне.

Высокое значение номинала конденсатора (в нашем случае более 60 пФ), подключаемого к рамочной антенне с ферритом, приводит к резонансу и, как следствие, вблизи резонансной частоты проигрыш в отношении сигнал-шум из-за влияния шумов усилителя значительно уменьшается, выше резонансной частоты – значительно увеличивается, а ниже резонансной частоты – остается таким же, как у нерезонансной рамочной антенны.

При конструировании приемных широкополосных антенн средневолнового диапазона следует минимизировать проигрыш в отношении сигнал-шум из-за влияния шумов приемника и не следует ориентироваться на режим согласования по мощности антенны и усилителя, так как это может привести к значительному проигрышу в отношении сигнал-шум (десятки дБ).

Грамотно спроектированная активная широкополосная рамочная антенна с ферритовым сердечником в средневолновом диапазоне частот может нисколько не ухудшить отношение сигнал-шум на выходе малошумящего усилителя приемника, несмотря на ее крайне низкий КПД (-75..-110 дБ). Это возможно вследствие высокого уровня атмосферного шума.

Список литературы

- Марков Г.Т., Сазонов Д.М. Антенны: Учебник для студентов радиотехнических специальностей вузов. Изд. 2-е, перераб. и доп. М., «Энергия», 1975.
- [2] Лавров А.С., Резников Г.Б. Антенно-фидерные устройства: Учебное пособие для вузов. М., «Сов. радио», 1974, 368 с.
- [3] Курочкин А.Е. Теоретические основы активных магнитных антенн: Учебно-методическое пособие по дисциплине «Радиоприемные устройства» для студентов специальности «Радиотехника». В 2 ч. Ч. 1: Шумовые параметры входных каскадов радиоприемных устройств с магнитной антенной / А.Е. Курочкин. Мн.:БГУИР, 2002. 50 с.: ил.
- [4] Цыбаев Б.Г., Романов Б.С. Антенны-усилители. М.: Советское радио, 1980. 240 с., ил.
- [5] R.C. Pettegill, H.T. Garland, and J.D. Meindl. Receiving Antenna Design for Miniature Receivers / IEEE Transactions on antennas and propagation, July 1911.
- [6] Рекомендации МСЭ-R Р.372-11 (09/2013). Радиошум. Серия Р. Распространение радиоволн.
- [7] Пол ЛИ (Paul LEE). Руководство по выбору малошумящего усилителя // Компоненты и технологии. 2010 г. №1. С. 46-51. https://www.kit-e.ru/articles/usil/2010_1_46.php