Особенности применения SDR-платформы NI USRP 2930 для реализации модема на базе оптимальных SEFDM-сигналов

Е. Н. Смирнова¹, С. В. Завьялов², С. Б. Макаров³ Санкт-Петербургский политехнический университет Петра Великого ¹katerina.shishina@yandex.ru, ²zavyalov_sv@spbstu.ru, ³makarov@cee.spbstu.ru

Annomaцua. This article describes features of implementation SDR-platform NI USRP 2930 for realization of modem based on optimal SEFDM-signals. Algorithms used in transmitter and receiver are considered. Frequency bandwidth values and BER performance of optimal SEFDM-signals are analyzed.

Ключевые слова: optimal; SEFDM; modem; SDR-platform

I. ОПИСАНИЕ МОДЕМА

Постоянный рост количества передаваемой информации, появление новых электронных устройств и увеличение их количества, необходимость в более высокой скорости передачи информации увеличивает требования к следующего коммуникациям поколения. Развитие коммуникационных технологий подразумевает повышение спектральной эффективности существующих типов модуляции [1, 2].

В настоящее время широко распространены OFDMсигналы: эту технологию используют LTE, WiFi, DVB-T2 и т. д. Мы можем повысить спектральную эффективность OFDM-сигналов двумя способами: уменьшить значение разноса частот между поднесущими (SEFDM-сигналы [3]), что позволяет уменьшить ширину полосы частот и использовать оптимальные формы огибающей, которые имеют регулируемую скорость уменьшения внеполосных излучений, а также позволяют уменьшить другие важные характеристики сигнала, например, пик-фактор [4]. В данной работе рассматривается использование таких оптимальных SEFDM-сигналов в модеме, реализованном на базе SDR-платформы NI USRP 2930.

Рис. 1. Модем на основе SDR-платформы NI USRP 2930

Модем на базе оптимальных SEFDM-сигналов состоит из программного модема и SDR-платформы NI USRP 2930. Программное обеспечение модема написано на языке C++и загружено на SDR-платформу. Внешний вид модема изображен на рис. 1. В модеме используются оптимальные SEFDM-сигналы. Такие сигналы имеют большую спектральную эффективность по сравнению с OFDM-сигналами за счет уменьшенного частотного разноса между поднесущими и применения сглаженных форм огибающих.

В нашем случае сглаженные формы огибающих – это оптимальные огибающие, полученные как результат решения оптимизационной задачи с ограничениями пикфактора менее чем 9.5 дБ.

Для получения численного решения оптимизационной задачи при ограничении на пик-фактор спектральноэффективных многочастотных сигналов использовалось разложение огибающей в конечный ряд Фурье.

В качестве помехоустойчивого кодирования используется полярное кодирование. Длины блоков – 512 бит на входе кодера и 1024 бит на выходе.

Параметры модема указаны в табл. 1.

Параметр	Значение		
Модуляция	BPSK		
Количество поднесущих	256		
Количество используемых поднесущих	192		
Длина циклического префикса	64		
Tun antiferentia	Прямоугольная, косинус,		
тип огиоающих	оптимальная		
Эквалайзер	Линейный		
Несущая частота	600 МГц		
Частота дискретизации	1 МГц		
Разнос между поднесущими	α·3.9 кГц		
Полоса занимаемых частот по уровню -	a:755 r/Lu		
10 дБ	u / 55 кг ц		
Полярное кодирование	Скорость 1/2		

А. Передатчик

Формирование сигнала в передатчике происходит следующим образом: сообщение поступает на BPSKмодулятор, проходит через скремблер, затем в полученной последовательности модулированных символов происходит расстановка пилотных поднесущих. Далее происходит добавление защитных интервалов слева и справа по частоте. Затем сигнал из частотной области при помощи быстрого обратного преобразования Фурье (IFFT) переносится во временную область и каждый из полученных OFDM-символов преобразуется в SEFDM путем усечения части отсчетов.

Далее происходит добавление циклического префикса и домножение SEFDM-символов на огибающую и формирование пакетов, после чего пакеты в виде I/Q отсчетов отправляются в буфер SDR-платформы NI USRP. Платформа осуществляет цифро-аналоговое преобразование, фильтрацию, усиление и излучение сигнала на несущей частоте. Схема передатчика в составе программного модема представлена на рис. 2.

Рис. 2. Схема передатчика

В. Приемник

Структура приемника изображена на рис. 3. На SDRплатформе автоматически выполняются следующие операции: перенос сигнала в основную полосу частот, аналого-цифровое преобразование, фильтрация и разложение на квадратурные компоненты. Далее сигнал поступает в программный модем, где происходит обнаружение сигнала.

Рис. 3. Схема приемника

Тактовая синхронизация представлена совокупностью трех алгоритмов: энергетического обнаружителя, коррелятора по циклическому префиксу и по повторяющимся участкам преамбулы.

После обнаружения преамбулы прием осуществляется по следующей схеме. Сначала происходит домножение SEFDM-символов на огибающую, затем удаление циклического префикса, БПФ и удаление защитных интервалов по частоте. Эквалайзинг в схеме приема спектрально-эффективных многочастотных сигналов осуществляется по пилотным поднесущим, затем происходит демодуляция.

II. Результаты экспериментального исследования

А. Полоса частот

Полосы занимаемых частот оптимальных SEFDMсигналов с разными формами огибающих представлены в табл. II.

ТАБЛИЦА II Ширина полосы занимаемых частот

Уровень	ΔF, κΓц				
спектра,	OFDM	SEFDM,	SEFDM,	SEFDM,	
дБ		$\alpha = 0.8,$	$\alpha = 0.8,$	$\alpha = 0.8,$	
		прямоугольная	косинус	оптимальная	
-3	755	600	600	600	
-20	800	700	650	650	

Экспериментально полученные результаты показывают, что полоса занимаемых частот сокращается пропорционально коэффициенту α.

В. Помехоустойчивость

Эксперимент по исследованию помехоустойчивости в канале с АБГШ с приемником на основе SDR-платформы USRP. проводился следующим образом: в ПО передатчика добавлялись реализации АБГШ к сигналу перед записью в буфер платформы, затем запускалось излучение. SDRплатформа в режиме приема осуществляла расчет вероятности ошибки и оценку отношения сигнал/шум.

Исследовались оптимальные SEFDM-сигналы с тремя видами огибающих при значениях коэффициента разнесения поднесущих частот а: 1 (OFDM) и 0.8. Также исследованы сигналы при применении помехоустойчивого полярного кодирования. Зависимость битовой ошибки (BER) от отношения сигнал/шум (SNR) данных сигналов представлена на рис. 4.

Рис. 4. Помехоустойчивость приема спектрально-эффективных многочастотных сигналов в канале с АБГШ

Отличие кривых помехоустойчивости сигналов с прямоугольной огибающей при α=1 и α=0.8 от теоретической кривой объясняется влиянием эквалайзера на приеме.

Помехоустойчивость оптимальных SEFDM-сигналов в случае сглаженных огибающих хуже, чем в случае прямоугольной огибающей. Однако стоит отметить, что в нашем случае непрямоугольные огибающие уменьшают пик-фактор, и ухудшение помехоустойчивости таких сигналов по сравнению с сигналами с прямоугольной огибающей – это компенсация за выигрыш в значениях пик-фактора. Худшую помехоустойчивость имеют SEFDMсигналы с огибающей вида косинус.

Использование оптимальных огибающих приводит увеличению спектральной эффективности на 15% при любом значении коэффициента разнесения поднесущих частот по сравнению с прямоугольной огибающей при энергетических потерях не более 0.5 дБ.

Список литературы

- Schaich F., Wild T., Chen Y. Waveform contenders for 5G-suitability for short packet and low latency transmissions // IEEE Vehicular Technology Conference. 2014. P. 1-5.
- [2] Zhang X., Jia M., Chen L., Ma J., Qiu J. Filtered-OFDM-enabler for flexible waveform in the 5th generation cellular networks // IEEE Global Communications Conference. 2015. P. 1-6.
- [3] Darwazeh I., Ghannam H., Xu T., The first 15 years of SEFDM: a brief survey // 11th International Symposium on Communication Systems. 2018. P. 1-7.
- [4] Smirnova E.N., Ovsyannikova A.S., Zavjalov S.V., Ge Dong On features of implementation SEFDM-transmitter with optimal shape of envelope // International Conference "Emerging Trends in Applied and Computational Physics. 2019. P. 1-7.