Методика оценки эффективности возбуждения активной среды гелий-неонового лазера

А. С. Киселев¹, Е. А. Смирнов²

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

¹askiselev@etu.ru, ²eas633@yandex.ru

Аннотация. В работе приводится методика оценки эффективности возбуждения активной среды неонового лазера. Основой методики предположение, что границы зоны возбуждения гелия в плазме тлеющего разряда являются величинами, а функция распределения электронов по энергиям (ФРЭ) максвелловская. Для визуализации процесса разработана программа, которая строит в общем масштабе ФРЭ и диаграмму энергетических уровней гелия и неона.

Ключевые слова: гелий-неоновый лазер; электронная температура; электронный КПД

I. Введение

Любой лазер, вне зависимости от типа его активной среды и способа накачки, может быть представлен в виде трех основных составляющих: источника накачки, активной среды и оптического резонатора. В соответствии с этим общий КПД лазера может быть найден как

$$\eta_0 = \eta_{\text{Hak}} \eta_{AC} \eta_{OP}$$
,

где $\eta_{\text{нак}}$ — КПД накачки, определяющий долю мощности накачки, затраченную на возбуждение активной среды (AC); η_{AC} — КПД активной среды, показывающий, какая доля мощности возбуждения активной среды преобразовывается в излучение когерентных квантов; η_{OP} — КПД оптического резонатора, устанавливающий соотношение между выходной мощностью излучения лазера и мощностью излучения когерентных квантов, не покидающих резонатор. Отдельные составляющие полного КПД определяются типом активной среды и используемой системой накачки [1].

Активной зоной газоразрядного лазера (ГРЛ) является участок положительного столба, соосный с оптическим резонатором. В некоторых конструкциях ГРЛ приэлектродные зоны не участвуют в усилении излучения. Энергия возбуждения передается излучающим частицам при столкновениях с электронами ПС. Как и в случае ТТЛ, мощность, передаваемая от электронов ПС активной среде, делится на две составляющие. Первая — мощность возбуждения АС, трансформируемая далее в излучение когерентных квантов, вторая — пороговая мощность возбуждения АС, расходуемая на компенсацию всех видов

потерь в оптическом резонаторе. Полный КПД газоразрядного лазера определяется как

$$\eta_0 = \eta_{\scriptscriptstyle \mathcal{I}\!\!J} \eta_{\scriptscriptstyle \Gamma EOM} \eta_e \eta_{AC} \eta_{OP}.$$

Оценка эффективности возбуждения активной среды описывается так называемым электронным КПД η_e . Для его расчета необходимо знать механизм передачи энергии от электронов к рабочему газу.

II. Описание методики

Во многих газоразрядных лазерах, в том числе и гелийнеоновых, передача энергии основному излучающему газу происходит через взаимодействие с буферным газом, имеющим большое значение сечения возбуждения при столкновениях с электронами. В таких случаях КПД электронной накачки находят из отношения энергии электронов, участвующих в возбуждении атомов АС, к полной энергии электронов положительного столба:

$$\eta_{e} = \frac{\int_{eU_{1}}^{eU_{2}} f_{e}(eU)dU}{\int_{0}^{\infty} f_{e}(eU)dU},$$
(1)

где eU_1 , eU_2 — энергии электронов, соответствующие нижней и верхней границам зоны возбуждения активных газовых сред, определяемых структурой энергетических уровней атома; e — заряд электрона, f_e — функция распределения электронов по энергиям.

Для определенности распределение электронов по энергиям можно полагать максвелловским. Тогда на основании выражения (1) для электронного КПД получим

$$\eta_{e} = \frac{eU_{1} + eU_{2}}{2kT_{e}} \left[\exp\left(-\frac{eU_{2}}{kT_{e}}\right) - \exp\left(-\frac{eU_{1}}{kT_{e}}\right) \right], \quad (2)$$

k — постоянная Больцмана; T_e — электронная температура [2].

На основе предложенной методики была разработана программа на языке программирования С#. Исходными данными для расчетов являются диаметр разрядной трубки лазера, суммарное давления газовой смеси, а также

соотношение парциальных давлений гелия и неона. Эти данные вводятся в специальные поля перед началом расчета.

Для определения электронного КПД необходимо знать температуру электронов в лазере. При известных условиях разряда (геометрии промежутка и составе газовой смеси) задача нахождения T_e сводится к решению трансцендентного уравнения баланса ионизации [3]. При этом полагается, что нейтрализация ионов происходит в результате процесса амбиполярной диффузии электронов и ионов к стенке трубки лазера [4].

После нахождения производится расчет электронного КПЛ по выражению (2). Результаты расчета выводятся в специальном поле программы. На основании результата расчета электронной температуры строится график функции распределения электронов по энергиям (функции Максвелла). Рядом с графиком функции распределения отображается диаграмма энергетических уровней гелия и неона. имеющих отношение К работе Энергетическая диаграмма имеет общую с функцией распределения ось энергии. На левом графике штрихуется область между энергиями, соответствующими значениям eU_1 , eU_2 . Эта область показывает долю электронов, участвующих в возбуждении активной среды. Далее можно сопоставить эту область с уровнями возбуждения гелия.

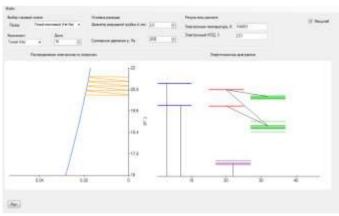


Рис. 1. Окно разработанной программы

Энергия возбуждения гелия имеет значение порядка 20 эВ, а максимум функции распределения для условий, соответствующих плазме гелий-неонового лазера, составляет 8...9 эВ. Поэтому для более наглядного отображения графиков предусмотрена функция смены масштаба по оси энергии.

III. ЗАКЛЮЧЕНИЕ

данной работе была разработана методика, производить позволяющая расчет эффективности возбуждения активной среды гелий-неоновых лазеров (электронного КПД). Методика позволяют производить расчет для известной геометрии лазера, и наполнения его газоразрядного промежутка. На основе предложенной методики была разработана программа, позволяющая помимо расчета электронного КПД наглядно отображать факторы, определяющие его численное значение: в совмещенном масштабе строится функция распределения электронов по энергиям, и диаграмма энергетических уровней лазера.

Разработанная методика подходит также для других видов газоразрядных лазеров. При этом необходимыми условиями использования методики являются знание механизмов возбуждения частиц, и энергетической диаграммы конкретного лазера. Полученные результаты имеют практическую ценность, и буду внедрены в учебный процесс кафедры Электронных приборов и устройств.

Список литературы

- [1] Пихтин А.Н. Квантовая и оптическая электроника. М.: Абрис, 2012. 656 с.
- [2] Смирнов Е.А., Черниговский В.В. Автоматизированный расчет и проектирование приборов квантовой электроники: Учеб. пособие. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2005. 96 с.
- [3] Грановский В.Л. Электрический ток в газе. М.: Издательство «Наука», 1971. 490 с.
- [4] Киселев А.С., Смирнов Е.А. Методика расчета параметров плазмы лазеров тлеющего разряда // Вакуумная техника и технология. 2014. Т. 24, № 1, С. 56-59.