Анализ корреляционных и фазовых метрик в моделях взволнованной морской поверхности

Н. С. Пыко*, С. А. Пыко, В. Н. Михайлов, М. И. Богачев

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

*goststalker14@gmail.com

Аннотация. Рассмотрены два различных подхода к анализу коррелированных случайных полей: с использованием корреляционных и фазовых метрик. Оба анализа подхода широко используются для и моделирования случайных полей, представляющих типичные наблюдения В задачах, связанных с геофизическими измерениями, листаниионным зондированием, обработкой биомедицинских изображений. В качестве примера анализируются две простых модели взволнованной морской поверхности, одна из которых представляет собой поле ветровых волн, а вторая суперпозицию ветровых волн и волны-убийцы. В обоих случаях для формирования полей применяется гармоническое моделирование, а их обработка основана либо на использовании мгновенных фаз, получаемых преобразованием Гильберта, либо на кроссанализе. Получены корреляционном аналитические зависимости, обеспечивающие взаимосвязь межлу фазовыми И корреляционными метриками. подтверждаемые численным моделированием

Ключевые слова гармоническое моделирование; мгновенные фазы; корреляционный анализ; модель морской поверхности; аналитическая обработка

I. Введение

Работа посвящена сопоставлению различных метрик случайных полей, основанных на их корреляционных и фазовых свойствах. В рамках проведенных исследований случайные поля синтезировались методом гармонического моделирования [1] на основе суперпозиции гармонических колебаний со случайными начальными фазами и с различными спектральными свойствами. Проанализирована взаимосвязь между характеристиками распределения начальных фаз. использованного при синтезе случайного поля, с его корреляционными свойствами, также С а характеристиками распределений разностной гильбертовой фазы компонент поля и амплитуд локальных максимумов, широко используемыми при анализе случайных полей в задачах дистанционного зондирования, биомедицинской диагностики и ряде других приложений [2-4].

II. Используемые метрики

Для изучения совместного поведения компонент случайного поля, формируемых в виде набора гармоник, используются различные количественные показатели, основанные на анализе их амплитуд или фаз. Традиционной метрикой, характеризующей взаимную динамику составляющих X и Y случайного поля, является коэффициент их взаимной корреляции, определяемый в соответствии с выражением

$$Corr_{XY} = \frac{\sum_{i=1}^{N} (X_i - \overline{X_i}) (Y_i - \overline{Y_i})}{\sqrt{\sum_{i=1}^{N} (X_i - \overline{X_i})^2 \sum_{i=1}^{N} (Y_i - \overline{Y_i})^2}}$$

Не меньший интерес для анализа взаимодействия отдельных спектральных составляющих случайного поля представляю собой метрики, основанные на анализе их фазовых соотношений. Наиболее актуальным в этой связи является коэффициент фазовой синхронизации [3, 4], основанный на анализе разности мгновенных значения фаз сигналов, определяемых на основе преобразования Гильберта. Данный коэффициент представляет собой долю интервалов синхронизации в общей последовательности данных. Интервал синхронизации фиксируется, когда разности среднеквадратическое отклонение (CKO) гильбертовых фаз в окне анализа не превышает установленного порога.

III. МОДЕЛИ СЛУЧАЙНОГО ПОЛЯ

Исследование корреляционных и фазовых метрик было выполнено для моделей взволнованной морской поверхности при отсутствии и при наличии волн-убийц. Поле ветровых волн описывается как суперпозиция спектральных компонент со случайными фазами:

$$z(x,t) = \sum_{i=1}^{N} A_i \cos\left(\omega_i t - k_i x + \varphi_i\right),$$

где $A_i = \sqrt{S(k_i)\Delta k}$; S(k) – пространственный спектр ветрового волнения; Δk – интервал дискретизации спектра; N – общее число гармоник; ω_i – частота элементарной волны; k_i – волновое число, рад/с; φ_i – случайная фаза, равномерно распределенная на интервале $[0, 2\pi]$.

Частота элементарной волны и волновое число связаны между собой через дисперсионное соотношение:

$$\omega = \sqrt{gk\left(1 + \frac{\sigma}{\rho g}k^2\right) th(kR)},$$

Работа выполнена при финансовой поддержке Российского научного фонда, проект № 21-79-10375 (https://rscf.ru/project/21-79-10375/)

где $g = 9.8 \text{ м/c}^2$ – гравитационная постоянная, k – волновое число, $\sigma = 74.34 \cdot 10^{-3} \text{ H/m}$ – поверхностное натяжение на границе раздела сред воздух – морская вода, ρ – плотность воды; R – глубина моря. При моделировании мы рассматриваем гравитационные волны, для которых действием поверхностного натяжения можно пренебречь. В этом случае дисперсионное соотношение имеет вид $\omega = \sqrt{gk}$.

Для описания частотной зависимости энергии ветровых волн полностью развитого волнения используется спектр Пирсона–Московица:

$$S(\omega) = 8.1 \cdot 10^{-3} g^2 \omega^{-5} \exp\left[-0.74 \left(\frac{\omega_m}{\omega}\right)^4\right]$$

Частота максимума спектра определяется скоростью ветра и выражается как $\omega_m = g / U_{10}$, где U_{10} – скорость ветра на высоте 10 м над поверхностью моря [5, 6].

Моделирование волн-убийц основано на том, что для их возникновения необходимо, чтобы существенная часть гармоник, участвующих в формировании поля, сложилась синфазно в некоторой точке. При моделировании это достигается модуляцией случайной фазы φ_i отдельных спектральных компонент. Для случая, когда $\omega_i t - k_i x \ge 0$, введем переменную $P \ge 0$: $P = int [(\omega_i t - k_i x)/2\pi]$. Модулирование φ_i производится следующим образом [7]:

• если
$$0 \le \omega_i t - k_i x - 2P\pi < \pi/2$$
, то $\frac{3\pi}{2} < \varphi_i \le 2\pi$;

• если
$$\pi/2 \le \omega_i t - k_i x - 2P\pi < \pi$$
, то $\pi < \varphi_i \le \frac{3\pi}{2}$;

• если
$$\pi \le \omega_i t - k_i x - 2P\pi < \frac{3\pi}{2}$$
, то $\frac{\pi}{2} < \varphi_i \le \pi$;

• если
$$\frac{3\pi}{2} \le \omega_i t - k_i x - 2P\pi < 2\pi$$
, то $0 < \varphi_i \le \frac{\pi}{2}$.

Аналогично можно рассчитать значения Φ_i для случая $\omega_i t - k_i x \ge 0$.

На рис. 1 представлена модель морской поверхности при ветровых волнах. Рис. 2 иллюстрирует модель ветровых волн при наличии волны-убийцы.

Волны-убийцы являются результатом штормов в районах мирового океана, нередко отдаленных на сотни километров от места их появления. Можно считать, что они не связаны с текущим ветровым волнением, тогда суммарный волновой профиль $z_s(x,t)$ будет равен сумме суперпозиции ветровых волн и волны-убийцы:

$$z_s(x,t) = z_w(x,t) + z_f(x,t)$$

где $z_w(x,t)$ – профиль ветрового волнения, $z_f(x,t)$ – профиль волны-убийцы. Результат моделирования представлен на рис. 2.

Рис. 1. Модель ветровых волн

Рис. 2. Модель суммарного волнового профиля

IV. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Рис. 3-7 иллюстрируют взаимосвязь корреляционных и фазовых метрик, характеризующих гармоническую модель случайного поля, соответствующую ветровому волнению. Окружности на каждом из рисунков отмечают значения соответствующих метрик, выборочные сплошная линия отражает результат их усреднения, а пунктирная линия определяет предлагаемую аналитическую аппроксимацию полученных зависимостей. На рис. 3 представлена зависимость СКО $\sigma_{\Phi} = \sigma (\Phi_Y - \Phi_X)$ фаз разности гильбертовых отдельных гармоник от разности их начальных фаз $\Delta \phi$.

Рис. 3. Зависимость СКО разности гильбертовых фаз от разности начальных фаз гармонических составляющих

Для связи данных метрик предлагается использовать функциональную зависимость вида $\sigma_{\Phi}=\pi\sqrt{\sin\left(\phi/2\right)}$.

Пользуясь известными правилами пересчета плотности вероятности (ПВ) случайной величины при ее функциональном преобразовании, в предположении равномерного распределения $\Delta \phi$ в интервале [0, 2 π] нетрудно получить выражение для ПВ $\sigma \phi$:

$$W(\sigma_{\Phi}) = \frac{2\sigma_{\Phi}}{\pi\sqrt{\pi^4 - \sigma_{\Phi}^4}}, \quad \sigma_{\Phi} \in [0, \pi].$$

Рис. 4 отражает зависимость коэффициента корреляции гармонических составляющих $Corr_{XY}$ от разности их начальных фаз $\Delta \phi$, задаваемую очевидным соотношением $Corr_{XY} = \cos(\Delta \phi)$.

ПВ коэффициента корреляции равна:

$$W(Corr_{XY}) = \frac{1}{2\pi\sqrt{1 - Corr_{XY}^2}}, \quad Corr_{XY} \in [-1, 1].$$

На рис. 5 показана зависимость максимальной амплитуды суперпозиции гармонических составляющих A_{\max} от разности их начальных фаз $\Delta \varphi$. Для аппроксимации данной зависимости используется выражение $A_{\max} = K \cos(\Delta \varphi/2)$, где K – нормирующий коэффициент, соответствующий значению максимальной амплитуды при нулевом фазовом сдвиге спектральных составляющих.

Рис. 4. Зависимость коэффициента корреляции гармонических составляющих от разности их начальных фаз

ПВ максимальной амплитуды определяется выражением:

$$W(A_{\max}) = \frac{2}{\sqrt{K^2 - A_{\max}^2}}, \quad A_{\max} \in [0, K]$$

Рис. 5. Зависимость максимальной амплитуды суперпозиции гармонических составляющих от разности их начальных фаз

С учетом предложенных аналитических выражений, связывающих $\Delta \phi$, A_{max} и σ_{Φ} , можно определить зависимость, показанную сплошной линией на рис. 6:

$$A_{\max} = K \cos\left(\arcsin\left(\sigma_{\Phi}^2 / \pi^2\right) \right).$$

Рис. 6. Зависимость максимальной амплитуды суперпозиции гармонических составляющих от СКО разности гильбертовых фаз

Аналитическое выражение, связывающее коэффициент корреляции гармонических составляющих $Corr_{XY}$ и СКО разности гильбертовых фаз σ_{Φ} (рис. 7) имеет вид

$$Corr_{XY} = \cos\left(2 \arcsin\left(\sigma_{\Phi}^2 / \pi^2\right)\right)$$

Рис. 7. Зависимость коэффициента корреляции гармонических составляющих от СКО разности гильбертовых фаз

Таким образом, при использовании гармонической модели случайного поля можно, располагая полученными зависимостями, осуществить переход от одной метрики к другим. Представленные выражения для плотностей вероятности метрик могут быть полезны при формировании решающих правил в задачах классификации случайных полей рассмотренного типа, в том числе в задачах, связанных с моделированием взволнованной морской поверхности.

V. Выводы

В результате проведенного исследования установлены аналитические взаимосвязи между распределениями фазовых сдвигов отдельных гармоник, использованных в процедуре гармонического синтеза, и коэффициентами взаимных корреляций СКО И разностной гильбертовой фазы сечений

сформированного ИМИ случайного поля. Также исследована зависимость амплитуд локальных указанных максимумов случайного поля OT характеристик. Полученные результаты подтверждают взаимосвязь рассмотренных метрик, а также указывают возможность оценки локальных максимумов на амплитуд морского волнения в различных условиях, что в перспективе позволит использовать полученные соотношения при моделировании динамики как нормального, так и аномального морского волнения, включая возникновение волн-убийц.

Список литературы

- [1] Blin N. et al. A comparison of harmonic modeling methods with application to the interconnection and the control of switched systems // European Journal of Control. 2021. V. 58. Pp. 245-257.
- [2] Bartsch R. P. et al. Network physiology: how organ systems dynamically interact // PloS one. 2015. V. 10. No. 11. Pp. e0142143.
- [3] Pyko N. S. et al. Assessment of cooperativity in complex systems with non-periodical dynamics: Comparison of five mutual information metrics // Physica A: Statistical Mechanics and its Applications. 2018. V. 503. Pp. 1054-1072.
- [4] Nikita S. Pyko, Svetlana A. Pyko, Oleg A. Markelov, Oleg V. Mamontov and Mikhail I. Bogachev. Quantification of the Feedback Regulation by Digital Signal Analysis Methods: Application to Blood Pressure Control Efficacy // Appl. Sci. 2020. № 10. P. 209.
- [5] Пирогов А.А., Жураковский В.Н. Моделирование сигналов, отраженных от взволнованной морской поверхности // Инженерный вестник. 2017. №5. С. 26-41.
- [6] Шургалина Е.Г., Пелиновский Е.Н. Проявление аномально больших волн зыби на фоне слабого ветрового волнения // Фундаментальная и прикладная гидрофизика. 2012. Т. 5. № 1. С. 77-88.
- [7] Gengkun Wu, Chuanxi Liu, Yongquan Liang. Computational simulation and modeling of freak waves based on Longuet-Higgins model and its electromagnetic scattering calculation // Hindawi Complexity Volume. 2020. Pp. 1-14.