Исследование пропускной способности наземного комплекса управления многоспутниковой орбитальной группировкой

А. С. Гарагуля, В. С. Куликов, С. С. Устинов

Военно-космическая академия имени А.Ф. Можайского

данной статье рассматривается теоретическая нагрузка на средства наземного комплекса управления (НКУ) при развертывании многоспутниковых орбитальных группировок. С помощью промоделированной многоспутниковой орбитальной группировки авторы рассчитывают количество аппаратов, которые одновременно могут находиться в зонах радиовидимости и необходимое количество управления, приходящееся на каждое радиоэлектронное средство управления космическими аппаратами для поддержания орбитальной группировки в исправном состоянии. Проведенное исследование может быть при формулировании требований использовано радиоэлектронным средствам управления космических аппаратов.

Ключевые слова: многоспутниковые орбитальные группировки, наземный комплекс управления, радиоэлектронные средства управления космическими аппаратами

І. Введение

В настоящее время одной из ведущих тенденций является развертывание в космическом пространстве многоспутниковых орбитальных группировок на основе малых космических аппаратов (КА). Это обусловлено такими их достоинствами, как низкая стоимость и высока скорость изготовления, возможность потокового производства, возможность группового запуска большого количества КА, глобальность предоставления космической сервисов развернутой системы. традиционных недостижимые В малочисленных орбитальных группировок средних и больших КА [2].

Яркими примерами таких орбитальных группировок (ОГ) являются Starlink и OneWeb, предназначенные для глобального доступа к широкополосному интернету, и обеспечения «интернета вещей».

В Российской Федерации ведутся аналогичные работы. Согласно федеральной целевой программы (ФЦП) «Сфера», одним из приоритетных направлений в космической деятельности является многоспутниковым орбитальным группировкам основе малых КА. В отличии от зарубежных проектов, «Сфера» космическая система будет содержать различных типов аппаратов, самыми несколько многочисленными ИЗ которых будут малые КА IoT», предназначенные глобальной сети и передачи данных «интернета вещей». ОГ КА этого типа будет состоять из 264 космических аппаратов в 12 плоскостях по 22 КА в каждой, на круговой орбите высотой 750 км [3]. Всего в «Сфере» будет более 600 КА.

Такое количество малых КА требует значительных ресурсов для осуществления координации, планирования и непосредственного управления многоспутниковой орбитальной группировкой. Значительное увеличение числа КА входящих в состав новых многоспутниковых орбитальных группировок приведет к значительному повышению нагрузки на существующие радиоэлектронные средства (РЭС) управления КА и, как следствие, невозможностью проведения всех требуемых сеансов управления (СУ).

II. ИССЛЕДОВАНИЕ ТРЕБУЕМОЙ ПРОПУСКНОЙ СПОСОБНОСТИ НКУ ПРИ УПРАВЛЕНИИ МНОГОСПУТНИКОВЫМИ ОРБИТАЛЬНЫМИ ГРУППИРОВКАМИ

Для прогнозирования загруженности РЭС управления комплекса управления (НКУ) при наземного многоспутниковой орбитальной управлении группировкой «Марафон IoT» в среде Matlab была разработана программная модель, позволяющая рассчитывать траектории полета КА [1], задавать местоположение пунктов управления, рассчитывать зоны обслуживания и другие необходимые параметры. Общий вид модели орбитальной группировки представлен на рис. 1.

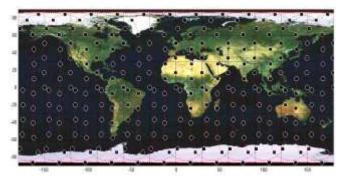


Рис. 1. Построение орбитальной группировки «Марафон-IoT»

Результаты моделирования показали, что в среднем над территорией Российской Федерации будет находиться до 50 KA «Марафон-IoT», что составляет 19% от общей численности $O\Gamma$.

Осуществлен расчёт количества аппаратов, которые будут находиться в зоне радиовидимости одного средства управления [4]. В среднем десять КА будут находиться в зоне радиовидимости РЭС управления КА.

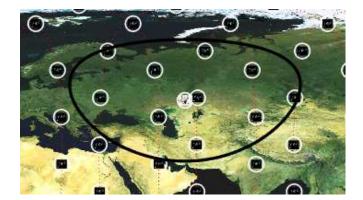


Рис. 2. Зона радиовидимости средства управления ОГ «Марафон-IoT»

Рассмотрим предполагаемый НКУ, состоящий из N отдельных пунктов управления КА.

Пусть:

$$N_{KA} = \{N_{KA1}, N_{KA2}, ..., N_{KAn}\}_{-\text{ множество KA}};$$
 $N_{P\ni C} = \{N_{P\ni C1}, N_{P\ni C2}, ..., N_{P\ni Cn}\}$ — множество РЭС:

$$K_{P \ni C} = \{K_{P \ni C1}, K_{P \ni C2}, ..., K_{P \ni Cn}\}$$
 – множество сеансов управления РЭС;

$$K_{HKV} = \{K_{HKV1}, K_{HKV2}, ..., K_{HKVn}\}$$
 – множество сеансов управления НКУ.

Тогда количество сеансов управления в сутки, требуемого для успешного функционирования орбитальной группировке с учетом резервирования [3] РЭС рассчитывается по формуле:

$$K_{HKV} = 2 \cdot N_{KA} \cdot N_{CV}, \qquad (1)$$

где N_{CV} – необходимое количество сеансов управления в сутки отдельным космическим аппаратом.

При равномерной нагрузке на все пункты управления КА, среднесуточное количество сеансов управления для отдельной РЭС определяется по формуле:

$$K_{P\supset C} = \frac{K_{HKV}}{N_{P\supset C}},\tag{2}$$

В связи с тем, что на данный момент КА Марафон разработке, технологический находится В пикп управления, позволяющий оценить количество проводимых сеансов управления и задействованных сформирован. Опыт средств эксплуатации отечественных и иностранных КА позволяет оценить требуемое количество сеансов управления от двух до пяти для каждого аппарата в течение суток [2].

На основе построенной модели ОГ «Марафон IoТ» и выражений (1) и (2) составлена табл. 1, в которой отражено количество сеансов управления, которые будут приходиться на отдельную РЭС управления КА при различных численностях НКУ.

ТАБЛИЦА І ИЗМЕНЕНИЕ КОЛИЧЕСТВА АППАРАТОВ В ЗРВ ПРИ УВЕЛИЧЕНИИ ОРБИТАЛЬНОЙ ГРУППИРОВКИ

Численность НКУ	Суточное количество сеансов управления для каждой РЭС управления при 2, 3 и 5 сеансах связи с каждым КА:		
	2	3	5
8	132	198	330
12	88	132	220
16	66	99	165
20	52,8	79,2	132
24	44	66	110

По результатам расчётов, представленных в табл. 1 можно сделать вывод, что возможный НКУ должен состоять минимум из 24 средств распределенных по РФ. исходя из среднего территории эксплуатации РЭС 22 часа в сутки. Рис. 3 отражает характер изменения суточной пропускной способности РЭС управления КА, выражающейся в суммарном количестве СУ, проводимых орбитальной группировкой численностью 264 аппарата технологическом цикле управления, включающем в себя два, три и пять сеансов в сутки (синяя, красная и зеленая линия соответственно).

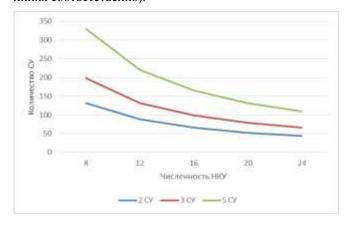


Рис. 3. Количество СУ, проводимых одной РЭС управления КА при различной численности НКУ

Изменения суточного количества сеансов управления для РЭС управления при изменении общей численности орбитальной группировки в случае, когда НКУ состоит из 24 пунктов управления, представлены в табл. 2.

ТАБЛИЦА II ИЗМЕНЕНИЕ КОЛИЧЕСТВА АППАРАТОВ В ЗРВ ПРИ УВЕЛИЧЕНИИ ОРБИТАЛЬНОЙ ГРУППИРОВКИ

Численность ОГ	Суточное количество сеансов управлени каждой РЭС управления при 2, 3 и 5 сеа связи с каждым КА:		
	2	3	5
264	44	66	110
396	66	99	165
528	88	132	220
660	110	165	275

По результатам, представленным в табл. 2 можно сделать вывод, что даже при численности ОГ в 264 аппарата и проведении всего двух СУ для каждого, на РЭС управления КА будет приходиться значительная нагрузка.

Изменение потенциальной суточной нагрузки отдельного пункта управления КА, входящего в НКУ из 24 отдельных пунктов при различных численностях ОГ и разном количестве сеансов представлены на рис. 4.

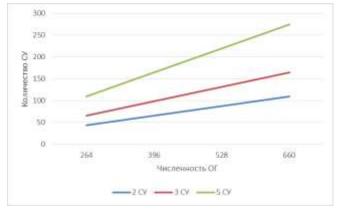


Рис. 4. Количество СУ, проводимых одной РЭС управления КА при различных численностях ОГ

На рис. 5 представлены зависимости, характеризующие пропускную способность НКУ многоспутниковой орбитальной группировки. Зависимости построены для НКУ, содержащего 24 пунктов управления, при значении количества КА варьирующимся от 264 до 660 и разном числе сеансов в сутки. В предельном случае, для 660 КА и пяти сеансов в сутки для каждого КА НКУ должен обеспечивать проведение около 6600 сеансов управления с учетом резервирования.

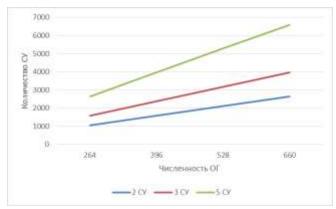


Рис. 5. Количество СУ, проводимых НКУ при различных численностях ОГ

III. ЗАКЛЮЧЕНИЕ

Проведенное исследование позволяет сделать вывод о том, что применение многоспутниковых орбитальных группировок на основе малых космических аппаратов при использовании традиционного подхода к управлению космическими аппаратами требует значительно большего количества РЭС управления КА и существенно повышает нагрузку на отдельное средство. Создание такого комплекса управления приведет к существенным затратам и усложнит задачу управления орбитальной группировкой.

Эффективная реализация управления многоспутниковыми космическими системами требует создания новых методов и средств управления. Одним из направлений решения этой задачи может быть создание сигнально-кодовых конструкций для группового управления космическими аппаратами многоспутниковых орбитальных группировок.

Список литературы

- [1] Аверкиев Н.Ф., Богачев С.А. Основы теории полета летательных аппаратов. СПб.: ВКА имени А.Ф. Можайского, 2013. 242 с.
- [2] Карацан И.Н. Наземный комплекс управления для малых космических аппаратов // Вестник Сибирского государственного аэрокосмического университета имени академика М.Ф. Решетнева. 2009. №1. С. 89-92.
- [3] Реализация проектов «Марафон IoT» и «Скиф» / Официальный сайт Роскосмос. URL: http://https://www.roscosmos.ru/33835/ (дата обращения: 14.02.2022).
- [4] Спутниковая связь и вещание: Справочник / Под. ред. Л.Я. Кантора. М.: Радио и связь, 1997. 528 с.