Место «Золотого» сечения в распределении вероятностей для модели системы массового обслуживания M/M/1/r

С. А. Ясинский, Л. В. Воробьев, А. В. Селезнев

Bоенная академия связи yasinsky777@mail.ru

Аннотация. В статье произведен анализ вероятности нахождения системы обслуживания M/M/1/r в разных состояниях и определены соответствующие этим состояниям закономерности, одна из которых соответствует «золотой» геометрической прогрессии.

Ключевые слова: система обслуживания, состояния системы, «золотое» сечение

Задана одноканальная ($\nu=1$) система массового обслуживания (СМО) со стационарным, ординарным потоком заявок (пакетов) без последействия с параметром λ на входе (М) и экспоненциальным распределением вероятности времени занятия с параметром потока обслуживания $\mu=1/t_0$ (М), где $t_0=1$ y.e. — средняя длительность обслуживания сервером одной заявки (пакета) в виде заданной условной единицы времени [1, 2]. Такую СМО принято условно обозначать как $M/M/\nu=1/r$, где r- число мест для ожидания в очереди (объем буфера памяти).

На основе известных из теории телетрафика математических моделей распределения вероятностей для M/M/1/r требуется произвести более точный анализ стационарного распределения P_i вероятностей нахождения CMO в i-м состоянии из множества возможных $(i=\overline{0,I})$, которое определяется числом ячеек памяти буфера, как функции от интенсивности поступающих заявок (пакетов) на его входе.

Исходные данные [1, 2]:

так как поток заявок (пакетов) простейший, то $\lambda_{i+1}=\lambda,\,i=\overline{0,I}$;

так как сервер один, то $\mu_{i+1} = \mu, i = \overline{0,I}$;

показатель интенсивности поступающей нагрузки на сервер $\rho=\lambda$ / μ ;

так как очередь конечная (r=I), то с учетом процесса рождения и гибели выполняются ограничения: $\rho < 1$; $\lambda_i < \mu_{i+1}$; $\lambda < \mu$;

среднее число ожидаемых заявок (пакетов) в очереди

$$N_{\gamma} = \frac{\rho^2}{1 - \rho} \,. \tag{1}$$

Запишем выражение (1) в виде приведенного квадратного уравнения

$$\rho^2 + N_{\nu}\rho - N_{\nu} = 0,$$

с положительным корнем

$$\rho_{1} = \frac{-N_{\gamma} + \sqrt{N_{\gamma}^{2} + 4N_{\gamma}}}{2}.$$
 (2)

Парето-оптимальное решение (2) может быть получено в единственном случае, когда $N_{\nu} = 1$. парето-оптимальности Физический смысл этой заключается в синхронности поступающих заявок (пакетов) с обработкой сервером без задержки при $N_{_{\nu}} = 1$. То есть когда каждая из поступающих на входе СМО заявок (пакетов) обслуживается сервером без очереди, но при этом обеспечивается максимальная (потенциальная) интенсивность обслуживания (производительность) сервера, так как он постоянно находится в состоянии обслуживания и без накопления заявок (пакетов) в очереди.

С учетом дискретности средней длительности обслуживания сервером одной заявки ($t_0=1$ y.e.) могут быть два направления изменения ρ_1 , как функции от N_γ , то есть когда $\rho(N_\gamma)_1$ отличается от парето-оптимального значения $\rho_{opt}(N_\gamma=1)_1$. То есть, при $N_\gamma \neq 1$ парето-оптимальность может нарушаться в следующих двух случаях:

 $N_{_{\gamma}}=\overline{2,M}$ — в буфере СМО образуется очередь из-за роста интенсивности поступающих заявок (пакетов), а потенциальная производительность сервера постоянная, то есть она не меняется в сравнении со случаем при $N_{_{\gamma}}=1$;

 $N_{\gamma} = \overline{1/2,1/M}$ — в буфере СМО очередь отсутствует из-за снижения интенсивности поступающих заявок, что приводит к снижению производительности сервера

относительно потенциального (максимального) значения, то есть она уменьшается в сравнении со случаем при $N_{_{\rm V}}=1$.

В табл. 1 приведены результаты расчетов $\rho(N_{_{\gamma}})_{_1}$ по формуле (6), при $N_{_{\gamma}}=\overline{1,5}$ и $N_{_{\gamma}}=\overline{1/1,1/5}$.

ТАБЛИЦА I. РЕЗУЛЬТАТЫ РАСЧЕТОВ $\rho(N_{_{\gamma}})_1$, при $N_{_{\gamma}}=\overline{1,5}\,$ и $N_{_{\nu}}=\overline{1/1,1/5}$

$N_{\gamma} = \overline{1,5}$	$\rho(N_{\gamma}=\overline{1,5})_{1}$	$N_{\gamma} = \overline{1/1,1/5}$	$\rho(\overline{1/1,1/5})_{1}$
	0,61803398	1/1=1	0,61803398
	0,73205080	1/2	0,5
	0,79128784	1/3	0,43425854
	0,82842712	1/4	0,39038820
	0,85410196	1/5	0,35825756

Анализ полученных результатов в табл. 1 показал:

 $N_{_{\gamma}}=1$ — соответствует парето-оптимальному значению $\rho_{_{opt}}(N_{_{\gamma}}=1)_{_{1}}=0,61803398...=\bar{\Phi}$, находящемуся в рамках диапазона $0<\rho_{_{opt}}(N_{_{\gamma}}=1)_{_{1}}<1$, где $\bar{\Phi}$ — обратное значение «золотого» сечения $\Phi=1/\bar{\Phi}=1,61803398...$ [3, 4];

 $N_{\gamma} = \overline{2,M}$ — имеет место линейная зависимость $\rho(N_{\gamma})_1;$

 $N_{\gamma} = \overline{1/2, 1/M}$ — линейная зависимость $\rho(N_{\gamma})_1$ нарущается.

Полученные с помощью выражения (2) результаты расчетов могут быть использованы в качестве исходных данных для проведения анализа вероятностей нахождения СМО M/M/1/r в i-х состояниях.

Так как случайный марковский процесс соответствует известному процессу гибели и размножения, а в нашем случае сервер один, то вычисление вероятности нахождения СМО в i-м состоянии из множества $i=\overline{0,I}$ производится по формуле [1, 2]:

$$P_{i}(\rho(N_{y})_{1}) = P_{0} * \rho^{i}(N_{y})_{1} = \rho^{i}(N_{y})_{1} * (1 - \rho(N_{y})_{1}).$$
 (3)

Для примера в табл. 2 приведены результаты расчетов $P_i(\rho(N_\gamma)_1)$ по формуле (3) при i=0,...,4 для нескольких значений $\rho(N_\gamma)_1$: 0,3; 0,5; 0,8; 0,61803398... = $\bar{\Phi}^1$.

ТАБЛИЦА II. РЕЗУЛЬТАТЫ РАСЧЕТОВ $P_i(\rho(N_{_Y})_{_1})$ по (3) при i=0,...,4 для нескольких значений $\rho(N_{_Y})_{_1}$

i	$P_i(\rho(N_{\gamma})_1)$				
	$\rho(N_{\gamma})_1 = 0.3$	$\rho(N_{\gamma})_1 =$	$\rho(N_{\gamma})_{1} = 0.5$	$\rho(N_{\gamma})_1 = 0.8$	
		$=0,61803398=\overline{\Phi}^{1}$			
0	0,7	$0,38196601 = \bar{\Phi}^2$	$0,5=\overline{S}^{1}$	0,2	
1	0,21	$0,23606797 = \bar{\Phi}^3$	0,25	0,16	
2	0,063	$0,14589803 = \bar{\Phi}^4$	0,125	0,128	
3	0,0189	$0,09016994 = \bar{\Phi}^5$	0,0625	0,1024	
4	0,00567	$0,05572808 = \bar{\Phi}^6$	0,03125	0,08192	

Анализ результатов расчетов в табл. 2 показал:

- по мере роста порядкового номера состояний СМО все вероятностные экспоненциальные зависимости обслуживаемых заявок (пакетов) выравниваются между собой, не превышая нескольких процентов (группируются в пучок) относительно максимально возможного значения:
- если продолжить вычисления значений $P_i(\rho(N_{\gamma})_1)$ в каждой колонке табл. 2, при условии $i \to \infty$, а затем все значения просуммировать, то получим сумму членов бесконечной геометрической прогрессии (ГП), которая в пределе сходится к единице, то есть

$$\sum_{i=0}^{\infty} P_i(\rho(N_{\gamma})_1) = 1.$$
 (4)

Однако, реально на практике число состояний конечно (конечная очередь), тогда выражение (4) можно представить в следующем уточненном виде:

$$\sum_{i=0}^{I} P_i(\rho(N_{\gamma})_1) < 1.$$
 (5)

Например, для $\rho(N_{_{\gamma}})_{_{1}}=0,61803398...=\bar{\varPhi}^{_{1}}$ в соответствующей колонке табл. 2 с использованием (5) получим

$$\sum_{i=0}^{I=4} P_i(\rho(N_{\gamma})_1) = \overline{\Phi}^2 + \overline{\Phi}^3 + \overline{\Phi}^4 + \overline{\Phi}^5 + \overline{\Phi}^6 = 0,909830... < 1,$$

хотя в теоретическом плане в соответствии с формулой (4) для членов «золотой» ГП имеет место бесконечный

предел сходящейся суммы:
$$\sum_{i=0}^{\infty} \bar{\Phi}^{i+2} = 1$$
 [4, 5].

Таким образом, для парето-оптимального значения средней длины очереди, когда $N_{_{\gamma}}=1$ и $t_{_{0}}=1$ у.е., получено устойчивое соотношение поступающими вызовами (пакетами) в буфер и их обслуживанием сервером, но без отказов обслуживании c максимально возможной производительностью обслуживания. Это паретооптимальное значение находится на границе перехода между натуральными числами и обратными им значениями (дробями) относительно $N_{_{\gamma}}=1,$ а так же характеризуется зависимостью параметров качества СМО M/M/1/r от «золотого» сечения и «золотой» ГΠ.

Кроме этого, в результате анализа вероятности нахождения СМО M/M/1/r в i-х состояниях определены соответствующие этим состояниям закономерности.

Список литературы

- [1] Шнепс М.А. Системы распределения информации / М.А. Шнепс. М.: Связь, 1979. № 2. 344 с.
- [2] Пшеничников А.П. Теория телетрафика / А.П. Пшеничников. М.: Горячая линия Телеком, 2018. 212 с.
- [3] Ясинский С.А. Основы унификации элементарной математики для инженеров-исследователей и место в ней «золотого» сечения / С.А. Ясинский. СПб.: ВАС, 2006. 124 с.
- [4] Ясинский С.А. «Золотое» сечения в стандартизации и теории измерения / С. А. Ясинский. СПб.: СПб.: ВАС, 2008. 160 с.