Возможности внедрения на малоинтенсивных железнодорожных участках систем коротковолновой радиосвязи

С. И. Лапунов

OAO «Российские железные дороги» lapunovsi@css.rdz.ru

Аннотация. Исследования подтверждают возможность использования коротковолновой ионосферной радиосвязи для организации сетей технологической железнодорожной радиосвязи, в том числе, на малоинтенсивных участках. При этом, варианты реализации таких сетей зависят от функциональных технических возможностей И используемой аппаратуры. В этой связи, необходимо рассмотреть варианты схем построения коротковолновой радиосвязи на основе конкретной аппаратуры, и по результатам рассмотрения дать рекомендации в отношении применения каждой из описанных схем.

Ключевые слова: коротковолновая ионосферная радиосвязь, технологическая железнодорожная радиосвязь, поездная радиосвязь, радиосвязь на малоинтенсивных железнодорожных участках

I. Варианты организации технологической железнодорожной радиосвязи на малоинтенсивных участках

Использование пространственных коротких волн (КВ) для организации технологической железнодорожной радиосвязи [1–3] возможно и целесообразно, в первую очередь, на малоинтенсивных железнодорожных участках (МЖУ), для которых построение традиционных сетей радиосвязи [4–6] экономически нецелесообразно.

При этом варианты организации технологической железнодорожной радиосвязи на МЖУ отличаются по следующим признакам:

- по месту установки КВ радиостанций (стационарных и мобильных);
- по основным функциям, выполнение которых обеспечивается за счет применения КВ радиосвязи;
- по перечню видов связи, осуществление которых обеспечивается за счет применения КВ радиосвязи.

Таким образом, основными возможными вариантами применения КВ радиосвязи (с учетом мест установки КВ радиостанций) являются следующие:

Д. Н. Роенков 1 , П. А. Плеханов 2

Петербургский государственный университет путей сообщения Императора Александра I

1 roenkov_dmitry@mail.ru
2 pavelplekhanov@gmail.com

- 1. стационарные KB радиостанции устанавливаются на базовой станции (БС) KB радиосвязи, мобильные KB радиостанции на подвижных объектах;
- 2. стационарные KB радиостанции устанавливаются на БС KB радиосвязи и на железнодорожных станциях МЖУ, мобильные KB радиостанции не используются;
- стационарные КВ радиостанции устанавливаются на БС КВ радиосвязи и на железнодорожных станциях МЖУ, мобильные станции КВ радиосвязи устанавливаются на подвижных объектах.
- КВ стационарные радиостанции устанавливаются на БС КВ радиосвязи, на железнодорожных станциях МЖУ, а также в МЖУ управления (опционально), мобильные КВ радиостанции устанавливаются на подвижных объектах, при этом, КВ радиосвязь соединения используется для технологической связи всех видов, действующих на станциях МЖУ, с сетью передачи данных оперативно-технологического назначения (СПД ОТН) ОАО «Российские железные дороги» (ОАО «РЖД») и далее – с абонентами сетей технологической связи ОАО «РЖД».

II. Примеры аппартауры коротковолновой радиосвязи

Для примера рассмотрим аппаратуру производства AO «Российский институт мощного радиостроения» (AO «РИМР») [7].

Основой системы радиосвязи является системообразующий автоматизированный адаптивный комплекс технических средств (АА КТС) КВ радиосвязи «Пирс», в состав которого применительно к стационарным объектам КВ радиосвязи на МЖУ должны входить:

- передатчик ПП-1000Ц;
- приемник ПТ-100 ПРМ-Ц;

 устройство управления и обработки сигналов УУОС.

В качестве стационарных антенн могут использоваться антенны типа ВНПУ (вибратор наклонный петлевой угловой) и ВГДШ (вибратор горизонтальный диапазонный шунтовой).

Применительно к подвижным объектам в состав комплекса «Пирс» на МЖУ могут входить:

- трансивер ПТ-100Ц или ПТ-250Ц (при наличии достаточной мощности альтернативой может являться передатчик ПП-1000Ц, рекомендованный для использования на стационарных объектах);
- приемник ПТ-100 ПРМ-Ц;
- устройство управления и обработки сигналов УУОС.

В качестве мобильной антенны рекомендуется применение антенны $\Pi A \Phi C$ (приемопередающая антенно-фидерная система).

III. ПРИМЕР ПОЛНОФУНКЦИОНАЛЬНОГО ВАРИАНТА ОРГАНИЗАЦИИ ТЕХНОЛОГИЧЕСКОЙ ЖЕЛЕЗНОДОРОЖНОЙ РАДИОСВЯЗИ НА МАЛОИНТЕНСИВНОМ УЧАСТКЕ

Полный набор возможностей применения каналов KB радиосвязи демонстрирует четвертый вариант (рис. 1), а именно:

- прямая связь по каналу КВ радиосвязи с абонентами, находящимися на подвижном объекте (организация связи в сетях поездной (ПРС), станционной (СРС) и ремонтнооперативной (РОРС) радиосвязи);
- создание составного канала радиосвязи канал КВ радиосвязи от БС КВ радиосвязи до стационарной (РС) КВ радиостанции, установленной на станции МЖУ (канал от поездного диспетчера до дежурного по станции) и канал радиосвязи диапазона 160 МГц или 2 МГц между дежурным по станции и машинистом;
- соединение каналом КВ радиосвязи абонентов сетей оперативно-технологической (ОТС) и общетехнологической (ОбТС) связи на станции с абонентами сетей технологической связи ОАО «РЖД» (через СПД ОТН ОАО «РЖД»).

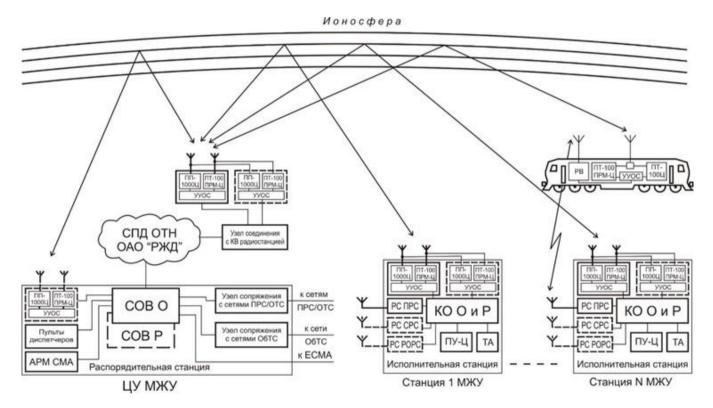


Рис. 1. Пример схемы построения системы КВ радиосвязи на МЖУ в соответствии с четвертым вариантом (ЦУ – центр управления; СОВ О и СОВ Р – серверы обработки вызовов основной и резервный; КО О и Р – коммутационное оборудование основное и резервное; ПУ-Ц – пульты управления цифровые; ТА – телефонные аппараты; АРМ СМА – автоматизированное рабочее место системы мониторинга и администрирования; ЕСМА – Единая система мониторинга и администрирования; РВ – возимая радиостанция)

Реализация данного варианта применения системы КВ радиосвязи показана на примере использования следующих видов оборудования АО «РИМР»:

- передатчик ПП-1000Ц;
- приемник ПТ-100 ПРМ-Ц;
- устройство управления и обработки сигналов УУОС:
- антенна ВНПУ или ВГДШ (конкретный вариант антенны выбирается в зависимости от расположения базовой станции относительно МЖУ);
- трансивер ПТ-100Ц (или ПТ-250Ц);
- приемник ПТ-100 ПРМ-Ц;
- устройство управления и обработки сигналов УУОС;
- антенна ПАФС.

IV. ОСОБЕННОСТИ ВЫБОРА ВАРИАНТОВ ОРГАНИЗАЦИИ ТЕХНОЛОГИЧЕСКОЙ ЖЕЛЕЗНОДОРОЖНОЙ РАДИОСВЯЗИ НА МАЛОИНТЕНСИВНЫХ УЧАСТКАХ

При определении реального объема решаемых с использованием каналов КВ радиосвязи задач, следует помнить, что системы КВ радиосвязи имеют ограничения по реализуемым скоростям передачи информации, и при разработке конкретной системы железнодорожной связи на базе системы КВ радиосвязи необходимо выбирать компромиссное решение на основе задаваемых требований по приоритетности предоставления связи, по качеству связи, по допустимой задержке в предоставлении связи [8–13].

Описанные варианты построения сетей КВ ионосферной технологической железнодорожной радиосвязи позволяют обеспечить функционирование на МЖУ всех необходимых видов железнодорожной электросвязи, начиная только с ПРС и заканчивая всеми видами связи, которые могут потребоваться на железнодорожной станции [14,15].

Список литературы

- [1] Лапунов С.И., Роенков Д.Н., Плеханов П.А. Коротковолновая ионосферная радиосвязь и возможности ее применения // Автоматика, связь, информатика. 2022. № 7. С. 14-19.
- [2] Лапунов С.И., Роенков Д.Н., Плеханов П.А., Глухов И.А. Применение систем коротковолновой радиосвязи на малоинтенсивных железнодорожных участках // Автоматика, связь, информатика. 2022. № 9. С. 4-8.
- [3] Лапунов С.И., Роенков Д.Н., Плеханов П.А., Глухов И.А. Радиосвязь на малоинтенсивных железнодорожных участках // Автоматика, связь, информатика. 2022. № 11. С. 2-7.
- [4] Роенков Д.Н., Коренной Г.О. Методические указания по организации и расчету сетей ПРС // Автоматика, связь, информатика. 2014. № 6. С. 18-20.
- [5] Роенков Д.Н., Коренной Г.О. Методические указания по организации и расчету сетей ПРС // Автоматика, связь, информатика. 2014. № 7. С. 11-15.
- [6] Плеханов П.А., Роенков Д.Н. Цифровые системы подвижной связи на железнодорожном транспорте. СПб.: ФГБОУ ВО ПГУПС, 2020. 41 с.
- [7] www.rimr.ru
- [8] Плеханов П.А., Роенков Д.Н. Стандартизация требований для систем беспроводной связи // Автоматика, связь, информатика. 2020. № 4. С. 38-42.
- [9] Плеханов П.А., Роенков Д.Н. Подвижная связь 5G // Автоматика, связь, информатика. 2019. № 5. С. 8-12.
- [10] Роенков Д.Н., Плеханов П.А. Технология МІМО для подвижной связи 5G // Автоматика, связь, информатика. 2019. № 8. С. 21-25.
- [11] Роенков Д.Н., Плеханов П.А. Мобильные сети поколения 5G: перспективы применения // Автоматика, связь, информатика. 2020. № 10. С. 2-7
- [12] Шматченко В.В. Роенков Д.Н., Плеханов П.А., Иванов В.Г., Яронова Н.В. Влияние отказов и сбоев системы радиосвязи GSM-R на безопасность перевозочного процесса // Известия Петербургского университета путей сообщения. 2016. Т. 13, вып. 4. С. 570-578.
- [13] Шматченко В.В. Роенков Д.Н., Плеханов П.А., Иванов В.Г., Яронова Н.В. Влияние отказов и сбоев системы радиосвязи GSM-R на готовность перевозочного процесса // Известия Петербургского университета путей сообщения. 2017. Т. 14, вып. 3. С. 490-500.
- [14] Плеханов П.А., Роенков Д.Н. Переход к будущей железнодорожной системе подвижной связи // Автоматика, связь, информатика. 2021. № 5. С. 6-11.
- [15] Роенков Д.Н., Плеханов П.А. Беспроводная связь для высокоскоростной железнодорожной магистрали Москва Санкт-Петербург // Автоматика, связь, информатика. 2021. № 12. С. 11-13.