Метод оптимизации толщины прострельных мишеней рентгеновских трубок

А. А. Александрова¹, А. Ю. Грязнов², Р. А. Бахтиев³

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ¹a.a.aleksandrova@inbox.ru, ²ay-gryaznov@yandex.ru, ³Bra_11.98@mail.ru

Аннотация. В работе рассмотрены особенности взаимодействия первичного пучка электронов с материалом мишени. Предложен метод, позволяющий подобрать оптимальную толщину мишени для обеспечения максимальной интенсивности излучения.

Ключевые слова: прострельный анод; толщина мишени; область генерации; поглощение рентгеновского излучения

I. Введение

В настоящее время все большая доля исследований в области рентгеновской дефектоскопии И рентгеноструктурного анализа проводится с помощью рентгеновских трубок с прострельным анодом. Такая конструкция (рис. 1) позволяет установить исследуемый объект практически вплотную к фокусному пятну, благодаря чему в рентгенодефектоскопии достигается значение коэффициента геометрического увеличения в 100-1000 раз, а в рентгеноструктурном анализе может быть реализована геометрия съемки в широкорасходящемся пучке.

Рис. 1. Рентгеновская трубка БС-1

При этом толщина прострельных анодов варьируется в диапазоне от единиц до десятков микрон [1]. Поскольку в качестве материала мишени в прострельном аноде используются тяжелоатомные химические элементы, эффективно поглощающие рентгеновское излучение, то для обеспечения максимальной интенсивности излучения трубки необходимо иметь возможность точно определять оптимальную толщину мишени, наносимой на выпускное окно трубки.

II. Методология

Искомый оптимум определяется в результате одновременного учета двух зависимостей – пространственного распределения интенсивности, генерируемого в теле мишени, рентгеновского излучения от прикладываемого к трубке напряжения и самопоглощения излучения в трубке, определяемого энергетическим распределением квантов и толщиной поглощающего слоя (рис. 2). Если бы весь электронный пучок «мгновенно тормозился» в одной точке на глубине R_0 и именно в этой точке бы генерировалось излучение, тогда оптимальная толщина прострельной мишени D, естественно, равнялась бы R_0 .

Рис. 2. К расчету оптимальной толщины мишени

Однако рассеяние первичного пучка в материале мишени происходит путем множественных дискретных процессов с различной вероятностью и различной величиной передающейся твердому телу энергии, при этом размеры области взаимодействия первичных электронов с мишенью могут значительно варьироваться в зависимости от энергии первичного пучка и свойств материала мишени. В общем виде потери энергии электронов первичного пучка описываются с помощью введения понятия «область взаимодействия», или «область генерации».

На практике для оценки размеров области генерации часто используют модели Бете–Блоха [2] и Канайя– Окаяма [3]. Соотношение, выведенное Бете (с поправкой Блоха) для непрерывной потери энергии, позволяет хорошо описать потери энергии при первичном пучке от 1 МэВ, однако при меньших энергиях формула Бете– Блоха становится неприменима. Для ориентировочной оценки полной длины пробега электронов в мишени в диапазоне энергий первичного пучка 10–1000 кэВ удобно воспользоваться моделью рассеяния электронов Канайя–Окаяма (1),

$$R_0 [MKM] = 0.0276 A E_0^{1.67} / (\rho Z^{0.889}),$$
 (1)

где E_0 – энергия первичных электронов, кэВ; ρ – плотность материала, г/см³; A – атомный вес, г/моль.

Вместе с тем данные модели не дают представления глубине, на которой первичный пучок после 0 взаимодействия с атомами материала мишени рентгеновское генерирует излучение, а также об относительной интенсивности этого излучения. Распределение интегральной интенсивности генерируемого тормозного и характеристического излучения по глубине проникновения электронов практически не описано, в большинстве работ [4-6] указана различная информация о положении максимума интенсивности на расстояниях от 1/3 до 2/3 от средней глубины пробега электронов. Но даже эти данные случаев не учитываются в большинстве при моделировании интенсивности излучения рентгеновских трубок с прострельными мишенями. а экспериментальных данных, дающих точные сведения о зависимости интенсивности от толщины мишени (с точностями порядка единиц микрон), в литературе не приводится. Вместе с тем простейшие расчеты показывают, что, например, при прострельной мишени из родия и рабочем напряжении трубки 40 кВ (что характерно для приборов рентгеноспектрального анализа) изменение толщины анода на 1-2 мкм приводит к изменению интенсивности излучения по оси пучка на 10-20 %, что существенно сказывается на времени анализа.

С использованием результатов работ [7-8] авторами предложена модель, позволяющая учитывать распределение интенсивности генерируемого излучения в зависимости от толщины анода и параметров трубки. необходимо отметить, что При этом вопрос распределении относительной интенсивности 0 генерируемого излучения по оси первичного пучка в теле мишени остается открытым и будет рассмотрен по результатам дальнейших экспериментов.

В модели учитывается средняя длина пробега электронов в мишени (1). Спектральная интенсивность генерируемого тормозного излучения определяется как (2):

$$I_t(E) = k \cdot Z_M \cdot i_a \cdot (E_0/E - 1), \qquad (2)$$

где k – константа, равная $8,8 \cdot 10^8$; Z_M – атомный номер материала мишени рентгеновской трубки; i_a – ток, протекающий через рентгеновскую трубку; E_0 – максимальная энергия квантов в спектре; а характеристического – как (3):

$$I_{hq} = k_1 \cdot i_a \cdot ((\gamma \cdot p \cdot R \cdot \omega_q) / Z_M) \cdot (E_0 / E - 1)^{1,67}, \quad (3)$$

где k_1 – константа, равная 5·10¹⁴; i_a – ток, протекающий через рентгеновскую трубку; Z_M – атомный номер материала мишени рентгеновской трубки; $\gamma = 3.8 \cdot 10^{-2}$ для К-серии характеристического излучения; $\gamma = 0.11$ для L-серии; р – доля флуоресценции данной характеристической линии; R – влияние обратного рассеяния электронов; ω_q – выход флуоресценции q-уровня; E_0 – максимальная энергия квантов в спектре; E_q – энергия ионизации q-уровня. Функции выхода и доли флуоресценции зависят не только от атомного номера элемента Z_M , но и от возбуждаемого уровня q (оболочки, в которой образовалась вакансия).

Степень ослабления излучения в мишени (4) определяется с использованием коэффициента полного ослабления [9], имеющего вид:

$$\mu(E) = \sigma_k(E) + \sigma_{nk}(E) + \tau(E). \tag{4}$$

Для примера на рис. 3 приведены зависимости для следующих условий: рабочее напряжение трубки – 60 кВ, материал анода – тантал, толщина выпускного бериллиевого окна – 200 мкм, ослабление в мишени не учитывается. Согласно формуле (1) максимальная глубина проникновения электронов, падающих на поверхность танталовой мишени при 60 кВ, составит 3,9 мкм.

Рис. 3. Спектральная плотность потока при указанных условиях (кв·с/ср) и спектральная зависимость линейного коэффициента ослабления для тантала (на 1 мм)

Введем в качестве примера (рис. 4) две модели распределения интенсивности генерируемого излучения по глубине проникновения электронов – с максимумами на 1/3 и 2/3 от длины свободного пробега.

Рис. 4. Нормированное распределение интенсивности генерируемого излучения (площадь под кривой равна единице)

Далее после двойного интегрирования можно получить зависимость интенсивности от толщины мишени (5):

$$I_{out}(D) = \iint f(E, x, D) dE dx,$$
(5)

где f(E,x,D) – функция, определяющая генерацию излучения в толщине мишени на центральной оси пучка; E – энергия квантов; x – координата по оси пучка. Если R₀ < D, то неравномерно ослабляется все сгенерированное излучение, если R₀ > D, то часть электронов проходит насквозь и не участвует в процессе генерации излучения. В итоге зависимость интегральной интенсивности генерируемого излучения от толщины мишени приобретает следующий вид (рис. 5).

Рис. 5. Зависимость интенсивности излучения от толщины прострельной мишени. Сплошная линия – при максимуме на 1/3 длины свободного пробега, пунктирная – на 2/3 длины свободного пробега

Наглядно видна максимумах разница в интенсивности в зависимости от выбранного распределения, а также существенное влияние толщины мишени на интенсивность выходящего из трубки излучения. Зависимости рассчитаны для приведенного выше примера – танталовой прострельной мишени и глубины проникновения 3,9 мкм при напряжении 60 кВ. В случае первого варианта распределения оптимальной ~ 3 мкм, второго – 3,5 мкм. является толщина Традиционно в подобных конструкциях рентгеновских трубок на напряжения 50-100 кВ используют мишени толщиной 5-7 мкм, что, как видно, ведет к снижению интенсивности примерно в 1,5 раза по сравнению с теоретически возможной.

III. Заключение

Таким образом, предложенная модель расчета зависимости интенсивности излучения от толщины мишени учитывает характер распределения, генерируемого тормозного и характеристического тормозного излучения по глубине проникновения электронов, материал мишени и энергию первичного пучка, что позволяет применять ее при расчете толщин мишеней трубок с прострельным анодом, а также толщин мишеней в различных видах ускорителей.

Список литературы

- Иванов С.А., Щукин Г.А. Рентгеновские трубки технического назначения. Л.: Энергоатомиздат. Ленингр. отд-ние, 1989. 200 с.: ил.
- [2] Макаров Д.Н. Потери энергии при столкновении заряженных частиц с осциллятором // Журнал технической физики, 2015. Т. 85. Вып. 4. С. 7-12.
- [3] Kanaya K., Okayama S. Penetration and energy-loss theory of electrons in solid targets // J. Phys. D: Appl. Phys, 1972. V. 5. P. 43-58.
- [4] Корепанов В.И. Импульсный люминесцентый анализ: учебное пособие. Томск: Изд-во Томского политехнического университета, 2008. 131 с.
- [5] Калмыков К.Б., Дмитриева Н.Е. Сканирующая электронная микроскопия и рентгено-спектральный анализ неорганических материалов: методическое пособие для студентов химического факультета МГУ имени М.В. Ломоносова. Москва, 2017. 59 с.
- [6] Зубавичус Я.В., Словохотов Ю.Л. Рентгеновское синхротронное излучение в физико-химических исследованиях // Успехи химии, 2001. Т. 70. Вып. 5. 35 с.
- [7] Патент № 2014618547 Российская Федерация. Свидетельство о государственной регистрации программы для ЭВМ. Программа для моделирования спектров излучения «Спектрон»: заявл. 01.07.2014: опубл. 20.09.2014. / Холопова Е.Д., Бессонов В.Б., Грязнов А.Ю., Жамова К.К., Лившиц А.О., Кунашик Е.С.
- [8] Холопова Е.Д. Учет характеристик детектора рентгеновского излучения при моделировании вторичных спектров // Х научнопрактическая конференция с международным участием «наука настоящего и будущего» для студентов, аспирантов и молодых ученых. Том 1. Сборник материалов конференции. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2022. 246 с.
- [9] Маренков О.С. Таблицы и формулы рентгеноспектрального анализа. Методические рекомендации. Л.: Машиностроение, 1982. 101 с.