Программный комплекс для моделирования работы рентгенофлуоресцентного спектрометра

Е. Д. Холопова¹, А. Ю. Грязнов², Е. И. Рулев, К. К. Гук

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

¹wkholopova@gmail.com, ²ay-gryaznov@yandex.ru

Аннотация. В работе приведены результаты моделирования вторичных спектров и спектров рассеянного излучения, возникающих при облучении объекта с учетом всех характеристик тракта регистрации. Приведен алгоритм работы программы и сравнительный анализ смоделированных спектров с реальными, полученными экспериментально.

Ключевые слова: рентгенофлуоресцентный анализ; энергодисперсионный спектрометр

I. Введение

В настоящее время метод рентгенофлуоресцентного анализа занимает одно из ведущих мест по широте применения при решении разнообразных задач. Рентгенофлуоресцентные энергодисперсионные и кристалл-дифракционные спектрометры позволяют с высокой точностью и за минимальное время качественно и количественно определять элементный состав многокомпонентных образцов в широком диапазоне концентраций.

работах [1-3] рассмотрены математические модели, позволяющие рассчитать как спектр первичного излучения рентгеновской трубки, так и сложный спектр рентгеновского излучения, включающий вторичное характеристическое излучение элементов анализируемого образца и рассеянное излучение рентгеновской трубки. Программа, учитывающая данные математические модели, разработана в среде Qt Creator, имеющей широкие возможности ПО работе графической информацией, также мощный математический аппарат. Данная статья посвящена описанию программного обеспечения, моделирующее возбуждения первичного процессы излучения рентгеновской трубки, возбуждения рентгеновского излучения в многокомпонентных образцах, условий регистрации вторичного излучения, которые позволяют использовать его, с одной стороны, при разработке новых и модернизации существующих рентгеновских приборов – рентгеновских излучателей (в зависимости от параметров трубок, выпускных окон, различных фильтров и т. п.) и энергодисперсионных приборов (комплекс дает возможность оценить аналитические параметры спектрометра в зависимости от изменения его технических характеристик), а с другой – для проведения методик при решении конкретных промышленных задач на серийных приборах.

II. МАТЕРИАЛЫ И МЕТОДЫ

При создании программного обеспечения были учтены следующие требования:

- минимизация погрешностей при расчете реального спектра излучения рентгеновских трубок;
- возможность выбора типа анода рентгеновской трубки (массивного или прострельного);
- возможность выбора состава среды между трубкой, объектом и детектором (воздух, вакуум, гелий и т. п.);
- широкий перечень материалов, используемых в конструкциях рентгеновских трубок и фильтрах;
- возможность выбора состава многокомпонентного образца;
- возможность выбора типа детектора (газового пропорционального, сцинтилляционного или полупроводникового);
- возможность сохранения полученных спектров излучения в основных графических форматах (bmp, jpeg, gif);
- возможность вывода спектра на печать.

Программа позволяет изменять при расчете следующие значения:

- конструктивные и технические параметры рентгеновской трубки — в зависимости от типа анода угол среза (для массивного) или толщину мишени (для прострельного), материал анода, ток и напряжение трубки, а также толщины стеклянной оболочки и выпускного окна;
- геометрическую схему съемки расстояние от фокусного пятна до поверхности исследуемого образца, угол падения излучения на образец, угол отбора вторичного излучения, угол отбора излучения, площади облучаемой поверхности образца и входного окна детектора;
- толщины и материалы первичных и вторичных фильтров (при наличии);

- химический состав и процентное содержание элементов в исследуемом образце (одновременное задание до 5 элементов);
- характеристики детектора материал и толщину входного окна детектора и его чувствительного слоя, энергетическое разрешение, коэффициент шумов.

После ввода данных пользователем, программа начинает их обработку и расчет спектров. Сначала входные данные проверяются на наличие ошибок (к примеру, длина пробега электронов в мишени не может быть больше ее толщины). Затем программа моделирует спектр и выводит на экран график. Помимо этого производится расчет энергий характеристических линий анода и элементов образца, что позволяет оценить интегральную интенсивность, плотность потока, а также влияние разрешения детектора на итоговый спектр. Программа позволяет изменять масштаб графика, его границы с помощью вращения колеса мыши по горизонтальной и вертикальной осям, более подробно рассматривать отдельные участки полученных зависимостей. В программном комплексе возможно построить два спектра, что позволяет оценить влияние вводимых изменений.

В разработанном комплексе особое внимание уделено моделированию:

- «наиболее вероятных (ярко выраженных) с дуплетами» характеристических линий для Ксерии (К α_1 , К α_2 , К β) и L-серии (L α_1 , L α_2 , L β_1 , L β_2 , L β_3 , L β_4 , L γ);
- процесса возбуждения вторичного характеристического излучения в исследуемом объекте, включая возбуждение вторичного характеристического излучения первичным тормозным и характеристическим излучениями, дополнительное возбуждение (самовозбуждение характеристического подвозбуждение) ипи излучения (в случае многокомпонентного образца), а также ослабление возбужденного характеристического излучения в образце при выходе из него;
- влияния рассеянного излучения для тормозной составляющей первичного спектра и для характеристических линий первичного спектра;
- влияния характеристик детектора рентгеновского излучения на спектр, включая геометрическую и собственную эффективности и эффективность поглощения, энергетическое разрешение, а также собственные (темновые) шумы и шумы, зависящие от загрузки детектора.

Внешний вид рабочего окна программы представлен на рис. 1.

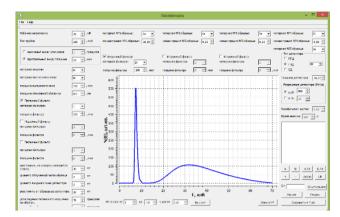


Рис. 1. Рабочее окно программного комплекса

III. РЕЗУЛЬТАТЫ

Примером реализации работы данного программного обеспечения могут служить представленные на рис. 2–4 спектры.

На рис. 2 представлен спектр пробы $0.2\,\%$ цинка $+2\,\%$ свинца в сухой борной кислоте, полученный на анализаторе БРА-18 (U = 33 кВ, I = 160 мкА, анод — Rh, первичный фильтр 100 мкм Cd, полупроводниковый детектор с разрешением 200 эВ на MnKa).

Как видно ИЗ представленного результата, существует некоторое расхождение в области энергий 5-12 кэВ, что может быть объяснено, вероятнее всего, одним из двух факторов - либо при производстве рентгеновской трубки реальная толщина прострельного анода была несколько меньше заявленной, что снизило самопоглощение в аноде, либо неверно указано значение толщины первичного фильтра (моделирование дает фильтром 200 мкм существенно приближенные результаты).

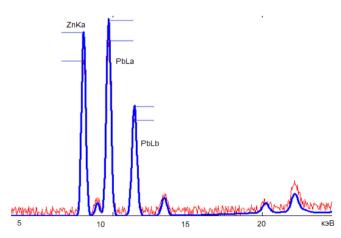


Рис. 2. Реальный и расчетный спектры пробы 0.2%Zn+2%Pb в борной кислоте (Rh анод) при напряжении 33 кВ и токе 160 мкA, а также кадмиевом фильтре 100 мкм

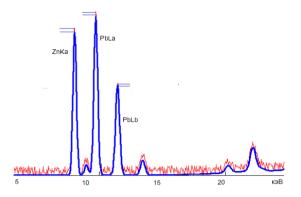


Рис. 3. Реальный и расчетный спектры пробы 0.2%Zn+2%Pb в борной кислоте (Rh анод) при напряжении 33 кВ и токе 160 мкА, а также кадмиевом фильтре 200 мкм

На рис. 4 представлен спектр пробы 0.1% хрома + 0.05% железа + 0.05% меди + 0.4% брома в сухой борной кислоте, полученный на анализаторе БРА-18 в следующих режимах: напряжение - 18 кВ, ток -200 мкA, анод - Rh, первичный фильтр 300 мкм алюминия. Различие в самой низкоэнергетичной области спектра обусловлено шумами электроники регистрирующего тракта и не влияет на соотношение интенсивностей в интересующей области.

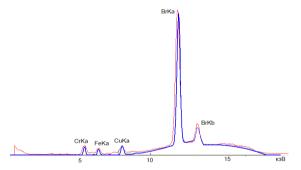


Рис. 4. Реальный и расчетный спектры пробы 0.1% Cr + 0.05% Fe + 0.05% Cu + 0.4% Br в сухой борной кислоте

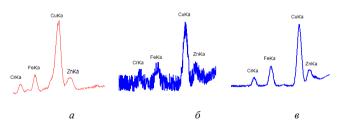


Рис. 5. Реальный и расчетный спектры пробы 0.1% Cr + 0.1% Fe + 0.3% Cu + 0.05% Zn в сухой борной кислоте: (a) реальный спектр за 200 секунд, (б) расчетный спектр за 10 секунд и (в) расчетный спектр за 200 секунд

На рис. 5, а показан реальный спектр, поученный на анализаторе БРА-18 при анализе пробы 0.1% Сг + 0.1% Fe + 0.3% Cu + 0.05% Zn за время 200 секунд. Как известно, основные типы шумов, отображаемые на спектре, носят статистический характер, поэтому повышение времени анализа ведет к снижению влияния шумов и увеличению важнейшей характеристики при анализе спектров – соотношению «сигнал-шум». На рис. 5, б показан смоделированный спектр за время экспозиции, равное 10 секунд, а на рис. 5, 6 – за 200 секунл. Полученные результаты показывают хорошую сходимость заложенной в модель спектрометра характеристики шумов с реальной, что позволяет использовать ее для определения рабочих характеристик анализатора (в частности, например, для определения зависимости его точности от времени анализа).

Полученные спектры хорошо согласуются с экспериментальными, что позволяет говорить о высокой точности расчетов с помощью данной программы.

IV. Выводы

Использование разработанного программного комплекса позволяет как определять оптимальные режимы работы, оценивать точность, предел обнаружения и иные параметры при моделировании рентгеноспектрального анализа, так и предварительно оценивать возможности решения на спектрометре той или иной аналитической задачи по определению химического состава вещества.

Список литературы

- [1] Программный комплекс для моделирования спектрального распределения потока излучения рентгеновской трубки. Холопова Е.Д., Грязнов А.Ю., Староверов Н.Е., Палханов И.С. // IV международная научно-практическая конференция: «Современные концепции научных исследований» Евразийский Союз Ученых (ЕСУ) # V, 2014. Технические науки. С. 41-42.
- [2] Программный комплекс для моделирования вторичных спектров рентгеновского излучения / Холопова Е.Д., Грязнов А.Ю., Староверов Н.Е., Александрова А.А., Чебыкин А.П., Бавкунова И.Ю. // VIII Всероссийская научно-практическая конференция производителей рентгеновской техники. Программа и материалы конференции, Санкт-Петербург, 25-26 ноября 2021. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2021. С. 131-135.
- [3] Учет разрешения детектора при моделировании вторичных спектров рентгеновского излучения / Холопова Е.Д., Грязнов А.Ю., Рулев Е. // 77-я научно-техническая конференция Санкт-Петербургского НТО РЭС им. А.С. Попова, посвященная Дню радио, Санкт-Петербург, 25-29 апреля 2022. СПб.: Изд-во СПбГЭТУ «ЛЭТИ», 2022. С. 228-229.