Расчёт констант сверхтонкой структуры в атоме лития и однозарядном ионе бериллия

Я. И. Давлетшин¹, С. Д. Холмес¹, Ю. А. Демидов^{1,2}

¹ Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина) ² Московский государственный университет им. М.В. Ломоносова

iurii.demidov@gmail.com

Аннотация. В работе рассмотрены прецизионные методы расчёта спектра и констант сверхтонкой структуры для атома гелия и гелиоподобного иона бериллия. Проанализирован вклад электронных корреляций и поправок на конечный размер ядра в значения констант сверхтонкой структуры этих систем. Полученные результаты позволяют исследовать изменения в распределении намагниченности в ядрах изотопов лития.

Ключевые слова: атомные спектры, сверхтонкая структура уровней

I. Введение

Взаимодействие электронов с ядром приводит к сверхтонкому расщеплению ΔE в спектрах атомов и ионов, которое выражается формулой:

$$\Delta E = A[F(F + 1) - I(I + 1)j(j + 1)]/2.$$

Здесь А – магнитная дипольная константа сверхтонкой структуры, F – полный момент атома, I – спин ядра, j – полный момент электрона. Константы сверхтонкой структуры могут быть измерены экспериментально с высокой точностью. Их величина сильно зависит от свойств ядра: его спина и магнитного момента µ. Эти свойства сильно меняются для различных изотопов, кроме того с увеличением числа нейтронов постепенно растёт радиус ядра. Поэтому в выражении для константы сверхтонкой структуры важно разделить атомные и ядерные параметры. В общем виде это выражение может быть записано в следующей форме [1]:

$$A = gA_0(1 - \delta)(1 - \varepsilon)$$

Здесь $g = \mu/I - ядерный g-фактор, A_0 - магнитная дипольная константа сверхтонкой структуры для точечного ядра, <math>\delta$ – поправка на конечное распределение заряда ядра (Брейта–Розенталь), ε – поправка на распределение ядерной намагниченности (Бора–Вайскопфа). Параметр A₀ один и тот же для всех изотопов. Для водорода и водородоподобных ионов выражения для A₀, δ и ε известны в аналитическом виде [1]. Поправки δ и ε можно записать в виде [2, 3]:

$$\delta = b_N(R/\lambda_c)^{2\gamma - 1}, \quad \epsilon = d_{nuc}b_M(R/\lambda_c)^{2\gamma - 1},$$

где R – радиус ядра, λ_c – приведённая комптоновская длина волны электрона, ү – релятивистское квантовое число, b_N и b_M – безразмерные параметры. Для рассмотренных в работе систем с малым зарядом ядра квантовое число у близко к 1. При описании поправки Бора-Вайскопфа необходимо учесть распределение ядерной намагниченности, которое зависит от валентной конфигурации нуклонов. Используя атомно-ядерную факторизацию, мы вводим в поправку є ядерный множитель d_{nuc} для учёта ядерных эффектов. При переходе от одного изотопа к другому множитель d_{nuc} может сильно меняться. Равномерному распределению ядерной намагниченности соответствует $d_{nuc} = 1$; $d_{nuc} = 0$ соответствует точечному магнитному диполю в центре ядра. В некоторых более сложных случаях ядерный множитель может быть вычислен рамках в одночастичной ядерной модели. Радиус ядра обычно плавно меняется и лишь на несколько процентов, таким образом, поправка б практически одинакова для всех изотопов выбранного атома.

В отличие от водорода и водородоподобных ионов, где необходимые вычисления могут быть проведены аналитически, описание многоэлектронных систем даже таких, как литий, требует проведения достаточно сложных численных расчётов. Наиболее точные расчёты и анализ экспериментальных данных для констант сверхтонкой структуры атома лития и иона бериллия работе [4]. используем привелены в Мы экспериментальные И теоретические ланные. приведённые в этой работе для минимизации количества ссылок.

II. МЕТОД РАСЧЁТА

Атом лития и ионы его изоэлектронной серии удобны для проверки методов расчёта атомных спектров, поскольку для этих систем доступно большое количество теоретических данных и имеются надежные экспериментальные значения частот переходов и констант сверхтонкой структуры. Мы рассматриваем эти системы как один валентный электрон над остовом, который содержит 2 остовных электрона. В таких атомных системах возможен достаточно точный учёт остовных, остовно-валентных корреляций.

Работа выполнена при финансовой поддержке РНФ, проект № 21-42-04411

В качестве начального приближения для расчёта энергетического спектра и свойств атомных систем использовался метод Хартри-Фока-Дирака. Электронные корреляции учитывались с помощью комбинированных методов расчёта. В рамках этих методов полное многоэлектронное пространство конфигураций разделено на два подпространства: валентное и остовное. Остовные и остовно-валентные корреляции учитывались в рамках лианеризованного метода связанных кластеров.

Электронная волновая функция системы в рамках метода связанных кластеров может быть записана в виде:

$$\Psi = e^T \Psi_0.$$

Кластерный оператор T представляет собой сумму п-кратных возбуждений: $T = T_1 + T_2 + ... + T_n$. Оператор е^T действует на референсную многоэлектронную волновую функцию Ψ_0 , которая может быть записана в виде детерминанта Слейтера для основного состояния системы. Раскладывая оператор е^T в ряд Тейлора и ограничивая это разложение только первыми слагаемыми: $T = T_1 + T_2$, получим выражение для волновой функции Ψ :

$$\neg = (1 + T_1 + T_2) \Psi_0.$$

Этот метод известен как линеаризованный метод связанных кластеров или парные уравнения [5]. Вклад трёхкратных возбуждений в данной работе учён частично по теории возмущений.

На первом этапе вычислений были найдены решения линеаризованных уравнений связанных кластеров для остовных и остовно-валентных кластерных амплитуд в приближении одно- и двукратных возбуждений, затем формировались одноэлектронные и двухэлектронные кластерные амплитуды для валентного подпространства, на третьем шаге эти амплитуды используются для формирования эффективного валентного гамильтониана [6]. Затем, использовался метод Хартри–Фока–Дирака. Использованный метод даёт достаточно точные волновые функции для последующего вычислений атомных свойств, таких как константы сверхтонкой структуры.

III. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Для расчёта констант сверхтонкой структуры важно воспроизвести спектр атома или иона достаточно аккуратно. Энергии электронных переходов из основного состояния 1s²2s известны экспериментально с высокой точностью. Результаты сравнения энергий электронных переходов в низколежащие уровни Li и Be⁺ приведены в табл. I.

Средняя погрешность метода Хартри–Фока–Дирака для представленных энергий переходов атома лития составляет 200 см⁻¹. Учёт остовных возбуждений методом лианеризованных связанных кластеров уменьшает эту погрешность до 5 см⁻¹ в рамках метода LCC SD (здесь учтены одно- и двукратные возбуждения из остова) и 1 см⁻¹ в методе LCC SDpT. Для Ве⁺ средние погрешности к энергиям переходов составляют 160 см⁻¹ в рамках метода Хартри–Фока–Дирака. Погрешности методов LCC SD и LCC SDpT не превышают 10 см⁻¹. Хотя остовы атома лития и иона бериллия состоят из двух электронов, метод LCC SD не является точным для этих систем, потому что разложение кластерного оператора содержит нелинейные слагаемые, которые частично учтены в рамках метода LCC SDpT.

ТАБЛИЦА I. СРАВНЕНИЕ РАССЧИТАННЫХ ЭНЕРГИЙ ПЕРЕХОДОВ ИЗ ОСНОВНОГО СОСТОЯНИЯ ДЛЯ LI И ВЕ⁺ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ [7]. ЭНЕРГИИ ПЕРЕХОДОВ (В СМ⁻¹) ПОЛУЧЕНЫ МЕТОДОМ ХАРТРИ-ФОКА-ДИРАКА (DHF), ЗАТЕМ УЧТЕНО ВЛИЯНИЕ ОСТОВНЫХ ЭЛЕКТРОНОВ В РАМКАХ МЕТОДА ЛИАНЕРИЗОВАННЫХ СВЯЗАННЫХ КЛАСТЕРОВ (LCC SD и LCC SDPT). МЕТОД LCC SD УЧИТЫВАЕТ ОДНОКРАТНЫЕ И ДВУКРАТНЫЕ ВОЗБУЖДЕНИЯ ИЗ ОСТОВА, В МЕТОДЕ LCC SDPT ЧАСТИЧНО УЧТЕНЫ ТАКЖЕ НЕЛИНЕЙНЫЕ ЧЛЕНЫ РАЗЛОЖЕНИЯ КЛАСТЕРНОГО ОПЕРАТОРА.

Состояние	Метод						
	DHF	LCC SD	LCC SDpT	эксперимент			
Li							
$1s^22s$	0	0	0	0			
$1s^22p_{1/2}$	14854	14908	14906	14904			
$1s^22p_{3/2}$	14854	14908	14906	14904			
1s ² 3s	26889	27210	27206	27206			
1s ² 3p _{3/2}	30627	30930	30927	30925			
$1s^2 3p_{1/2}$	30626	30930	30926	30925			
Be ⁺							
$1s^22s$	0	0	0	0			
$1s^22p_{1/2}$	32205	31937	31931	31929			
1s ² 2p _{3/2}	32211	31944	31944	31935			
1s ² 3s	87711	88239	88235	88232			
$1s^2 3p_{1/2}$	96073	96504	96501	96495			
1s ² 3p _{3/2}	96075	96506	96503	96497			

В тоже время даже точности метода LCC SDpT недостаточно для воспроизведения расщепления уровней 1s²3p_{3/2} и 1s²3p_{1/2} в атоме лития.

В работе достигнута приемлемая точность расчётов энергий переходов, по крайней мере, в рамках методов лианеризованных связанных кластеров. Далее полученные волновые функции были использованы при расчёте констант сверхтонкой структуры.

Стабильный изотоп ⁷Li имеет спин ядра I = 3/2, ядерный g-фактор g = 2.170938(8) и радиус ядра R = 3.16(5) фм (см. ссылки в [4]). Валентная конфигурация нуклонов в ⁷Li соответствует протону в состоянии р_{3/2}, поэтому ядерный множетель d_{пис} = 0.95 [3] может быть найден в рамках одночастичной ядерной модели. Стабильный изотоп ⁹Ве имеет спин I = 3/2, ядерный gфактор g = -0.784953(3), радиус ядра R = 3.25(2) фм (см. ссылки в [4]) и ядерный множитель d_{пис} = 1.08 [3] для валентного нейтрона в состоянии р_{3/2}.

Константы сверхтонкой структуры ⁷Li и ⁹Be⁺ крайне чувствительны к уровню учёта корреляционных эффектов, так константа сверхтонкой структуры в литии А(2p_{3/2}) меняет знак при расчёте методами Хартри– Фока–Дирака и связанными кластерами. Константа А(2p_{3/2}) в ионе бериллия вследствие корреляционных эффектов уменьшается по абсолютной величине в 18 раз. В целом использование методов связанных кластеров позволяет достичь хорошего согласия с экспериментальными данными.

ТАБЛИЦА II. СРАВНЕНИЕ КОНСТАНТ СВЕРХТОНКОЙ СТРУКТУРЫ В МНZ ДЛЯ СТАБИЛЬНЫХ ИЗОТОПОВ ⁷LI И ⁹ВЕ⁺ ПОЛУЧЕННЫХ В РАМКАХ МЕТОДОВ ХАРТРИ-ФОКА-ДИРАКА (DHF) И ЛИАНЕРИЗОВАННЫХ СВЯЗАННЫХ КЛАСТЕРОВ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ [4]

Состояние	Метод						
	DHF	LCC	LCC	эксперимент			
		SD	SDpT				
⁷ Li							
$1s^22s$	284.35	401.16	401.19	401.752043			
$1s^22p_{1/2}$	32.29	45.88	45.87	45.914(25)			
$1s^22p_{3/2}$	6.46	-2.99	-2.99	-3.055(14)			
⁹ Be ⁺							
$1s^22s$	-497.66	-624.88	-624.94	-625.008837			
$1s^22p_{1/2}$	-93.26	-117.82	-117.81	-118.6(36)			
1s ² 2p _{3/2}	-18.64	-1.04	-1.04	$-1.016(3)^*$			

* Результат теоретического расчёта из [4].

IV. ЗАКЛЮЧЕНИЕ

В работе исследована точность методов Хартри– Фока–Дирака и лианеризованных связанных кластеров для расчёта энергий переходов и констант сверхтонкой структуры. В рамках этих методов атом Li и ион Be⁺ рассматриваются как один электрон над заполненным остовом 1s². Использование методов связанных кластеров позволяет воспроизвести исследуемые свойства со спектроскопической точностью.

БЛАГОДАРНОСТЬ

Авторы выражают признательность Козлову Михаилу Геннадьевичу и Сафроновой Марианне Станиславовне за предоставление программ и оказанную помощь при проведении расчётов.

Список литературы

- Shabaev V.M. Hyperfine structure of hydrogen-like ions // J. Phys. B, V. 27, P. 5825–5832 (1994).
- [2] Konovalova E.A., Kozlov M.G., Demidov Yu.A., Barzakh A.E. Calculation of thallium hyperfine anomaly // Rad. Applic., V. 2, P. 181–185 (2017).
- [3] Konovalova E.A., Demidov Yu.A., Kozlov M.G., Barzakh A.E. Calculation of francium hyperfine anomaly // Atoms, V.6, P. 39 (2018).
- [4] Yerokhin V.A. Hyperfine structure of Li and Be⁺ // Phys. Rev. A, V. 78, P. 012513 (2008).
- [5] Blundell S.A., Johnson W.R., Liu Z.W., Sapirstein J. Relativistic allorder calculations of energies and matrix elements for Li and Be⁺ // Phys. Rev. A, V. 40, P. 2233 (1989).
- [6] Safronova M.S., Kozlov M.G., Johnson W.R., Jiang D. Development of a configuration-interaction + all-order method for atomic calculations // Phys. Rev. A,V. 80, P. 012516 (2009).
- [7] Kramida A., Ralchenko Yu., Reader J., NIST ASD Team. NIST Atomic Spectra Database (ver. 5.9), [Online]. Available: https://physics.nist.gov/asd [2016, January 31]. National Institute of Standards and Technology, Gaithersburg, MD. 2021.