Фокусировка диаграммы направленности многочастотной антенной решетки

В. Ю. Волков^{1,2}, Нгуен Вьет Ан^{1,3}

¹Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина); ²Санкт-Петербургский государственный университет аэрокосмического приборостроения; ³Государственный технический институт им. Ле Куй Дона, Ханой, Вьетнам

vl_volk@mail.ru, kphivan95@gmail.com

Аннотация. Исследуются диаграммы направленности в линейной эквидистантной антенной решетке с частотным разнесением сигналов и линейновозрастающим частотным планом. Рассмотрены случаи полностью сфокусированной диаграммы направленности, а также сфокусированной только на передачу или только на прием.

Ключевые слова: многоэлементная антенная решетка; частотное разнесение сигналов; диаграмма направленности; согласованные фильтры

I. Введение

Бурное исследование возможностей многоэлементных антенн с частотным разнесением (Frequency Diverse Array – FDA) началось, по-видимому, с работ Антоника [1, 2] в 2006 году. Однако еще в 1997 г. в России многочастотные антенные решетки применялись для формирования импульсных сигналов [3].

пространственные свойства диаграммы Ha направленности многочастотной решетки влияют расположение антенных элементов И значения излучаемых несущих частот. Для равномерного линейного (эквидистантного) FDA с одинаковыми приращениями частоты дальность связана с углом в диаграмме направленности дальнего поля, что приводит к S-образному распределению энергии в плоскости углового диапазона [1-5].

Зависимость диаграммы направленности от угла, дальности И времени позволяет осуществлять автосканирование пространства без применения фазовращателей, но это затрудняет фокусирование луча на выбранных участках пространства. Для преодоления этой зависимости и достижения точечной формы фокусирующего луча были предложены нелинейно изменяющиеся приращения частоты, в частности, по логарифмическому закону, зависящие от времени, многоподнесущие и случайные приращения частоты [6, 7].

Однако эти решения существенно усложняют реализацию антенной системы и ее фокусировку. В то же время влияние различных методов формирования диаграммы направленности не до конца исследовано и для обычных многочастотных систем. В статье исследуются свойства диаграммы направленности многочастотной решетки с линейным частотным планом при использовании различной фокусировки.

II. СИГНАЛЫ В МНОГОЧАСТОТНОЙ АНТЕННОЙ РЕШЕТКЕ

Рассмотрим *М*- элементную линейную передающую антенну, содержащую элементы с координатами d_m относительно первого элемента, так что $d_1 = 0$. Считаем, что элементы антенны имеют идентичные и изотропные диаграммы направленности и их размеры малы по сравнению с длиной волны.

Каждый передающий элемент излучает узкополосные сигналы $s_m(t) = u_m(t)\exp(j2\pi f_m t)$ с одинаковыми начальными фазами и частотами $f_m = f_0 + \Delta f_m$, $m=0, \ldots, M-1$, где $u_m(t)$ – комплексные огибающие.

Пусть фокусировка и слежение на передающем конце отсутствуют, тогда суммарный сигнал передающей антенны в точке дальней зоны на расстоянии R и под углом θ к нормали (boresight direction) можно (без учета амплитудного ослабления) записать в виде

$$x(t, R, \theta) = \sum_{m=0}^{M-1} u_m(t) \exp(j2\pi f_m(t - R_m / c))$$

где $R_m = R - d_m \sin \theta$.

При одинаковой временной модуляции сигналов каждого элемента амплитудная диаграмма направленности (ДН) на передачу равна модулю суммарного сигнала *x*(*t*).

По сравнению с ФАР ($\Delta f_m = 0$) ДН оказывается зависящей от угла, времени и от дальности до точки. Предпринимались разные попытки устранить или ослабить эти зависимости и получить *статические* диаграммы направленности, необходимые для обнаружения и оценивания координат целей [11, 12]. Насколько серьезен этот недостаток, зависит от возможностей фокусировки решетки. Этот вопрос исследован недостаточно подробно, что и составляет предмет рассмотрения в данной статье.

Далее представлены результаты расчета и моделирования сигналов многочастотной решетки с линейным частотным планом.

III. МНОГОЧАСТОТНАЯ АНТЕННА С ЛИНЕЙНЫМ ИЗМЕНЕНИЕМ ЧАСТОТЫ МЕЖДУ ЭЛЕМЕНТАМИ

Для детального анализа рассмотрим эквидистантную линейную решетку (ULA – uniform linear array) включающую M приемо-передающих элементов, разделенных полуволновым интервалом d. Также примем линейное возрастание частот излучения каждого элемента (линейно возрастающий частотный план) $f_m = f_0 + m\Delta f, m = 0, ..., M-1$. Здесь Δf – постоянный частотный сдвиг (frequency offset). Такой вариант соответствует распространенной «обычной» схеме с частотным разнесением (conventional FDA).

А. Диаграмма направленности на передачу

Рассмотрим случай отсутствия фокусировки по углу в передающих элементах. Фактически диаграмма направленности оказывается ориентированной по нормали к оси решетки ($\theta = 0$, boresight direction).

каждой точке пространства формируется суммарный сигнал (1). Если начальные фазы излучаемых импульсов одинаковы, то временная форма суммарного сигнала для M = 6 представлена рис. 1*a*, где выбрано направление по нормали к оси антенны ($\theta = 0$, boresight direction). Здесь также выбрано запаздывание, равное 200 отсчетам через Ts =0.01 нс, что соответствует дальности 0,3 м. На рисунке для сравнения изображены монохромные импульсы от первого и шестого передающих антенных элементов. Максимумы формируемого излучения повторяются через $T_f = 1/\Delta f = 25$ нс, что в данном случае соответствует $\Delta R =$ 2,5 метрам по дальности.

Рис. 1. Форма суммарного сигнала передатчика для M = 6: a – при одинаковых нулевых начальных фазах в передающих элементах; б – при чередующихся начальных фазах 0 и π

Если начальные фазы излучаемых импульсов чередуются от элемента к элементу, принимая значения 0 и π , то форма сигнала меняется так, что максимумы оказываются в центре каждого первоначального интервала T_f (рис. 16).

Амплитуда суммарного сигнала сдвигается по времени (дальности) при перемещении цели по углу в соответствии с диаграммой направленности на передачу (рис. 2*a*). При отрицательных углах импульсы перемещаются в сторону больших дальностей, а при положительных – в сторону меньших.

Диаграмма направленности на передачу существует в пространстве только в границах дальности, связанных с длительностью излучаемых импульсов. В частности, на рис. 2δ представлен случай короткого импульса u(t) длительностью T = 25 нс (2500 временных отсчетов). Длительность импульса перекрывает один период T_f диаграммы направленности.

На рис. 3 изображена траектория максимума суммарного сигнала x(t) (нижняя кривая IS) в зависимости от направления на цель. Временная задержка максимума суммарного сигнала оказывается зависящей от направления на цель, т. е. угол и дальность до цели оказываются связанными, что обычно нежелательно.

Если суммарный сигнал x(t) подвергается согласованной фильтрации, то на выходе фильтра формируется автокорреляционная функция:

Рис. 2. Диаграммы направленности на передачу: *а* – для длинного импульса; *б* – для короткого импульса длительности *T_f*

Рис. 3. Траектории максимумов импульсов суммарного сигнала (IS) и сигналов на выходе фильтров (IC и IC0)

$$C(t) = \int_{-T}^{T} x(\tau) x(t-\tau) d\tau$$

Положение ее максимума уже не зависит от угла прихода излучения. Соответствующая горизонтальная линия (IC) представлена на рис. 3. Такая фильтрация означает фокусировку передающей диаграммы направленности по углу и дальности, что требует знания этих параметров цели.

В случае применения фильтра, настроенного на многочастотный опорный сигнал

$$s_0(t) = \sum_m \exp(j2\pi f_m t),$$

фокусировка отсутствует, и зависимость времени задержки максимума выходного сигнала фильтра от угла сохраняется (линия ICO на рис. 3 для случая короткого импульса).

На рис. 4 изображены временные формы суммарного сигнала (SUM), его корреляционной функции (C) и форма результата несогласованной фильтрации (C0) для углового положения цели $\theta = 0$ (a) и $\theta = -30^{\circ}$ (б). При изменениях этого угла суммарный импульс SUM и

импульс C0 перемещаются по дальности, а импульс C не меняет своего положения.

Диаграммы направленности на передачу представлены на рис. 5. При согласованной фильтрации имеем сфокусированную по дальности равнонаправленную ДН (рис. 5*a*). Несогласованная фильтрация (СО) почти не меняет ход диаграммы направленности по сравнению с суммарным сигналом (SUM, рис. 2*a*), хотя заметна некоторая фокусировка в узкой области углов на определенной дальности (рис. 5*б*).

Рис. 4. Суммарный сигнал (SUM), его корреляционная функция (С), и результат фильтрации несогласованным фильтром (СО): *a* – для θ = 0; δ – для θ = -30°. Внизу показан излученный импульс с первого элемента антенны

В. Диаграмма направленности на прием

Рассмотрим случай неподвижной точечной цели в дальней зоне с координатами (R, θ). Не рассматривая влияния затухания при распространении, и полагая коэффициенты отражения цели одинаковыми для каждой из излучаемых частот, можно исследовать поведение принимаемых сигналов в зависимости от дальности, угла прихода и времени.

Принятый сигнал *n*-м приемным элементом с точностью до коэффициента можно записать в виде

$$y_n(t, R, \theta) = u(t - 2R/c) \sum_{m=0}^{M-1} \exp(j2\pi f_m(t - R_m/c - R_n/c)))$$

n = 1,..., N.

При отсутствии фокусировки и слежения на приемном конце принимаемые сигналы суммируются:

$$Y(t, R, \theta) = \sum_{n=0}^{N-1} y_n(t)$$

Часто исследуется двусторонняя диаграмма направленности, свойства которой весьма показательны. Она определяется как модуль сигнала *Y* при двустороннем распространении.

Однако такая диаграмма направленности не учитывает обработки в приемных элементах, которая может быть реализована различным образом. В случае отсутствия направленных помех фильтрация может быть согласованной с суммарным сигналом передатчика для обеспечения наилучшего отношения сигнал/шум. Для такой фильтрации необходимо задание значений дальности и угла цели.

Рис. 5. Диаграммы направленности на передачу: а – при согласованной фильтрации (С); б – при несогласованной фильтрации (С0)

IV. ФОКУСИРОВКА ДИАГРАММЫ НАПРАВЛЕННОСТИ В МНОГОЧАСТОТНОЙ РЕШЕТКЕ

Фокусировка по углу и дальности для диаграммы направленности на заданные значения (R_0 , α) осуществляется путем введения фазовых множителей для передающих и приемных элементов:

$$w_{t,m} = \exp(j2\pi f_m (R_0 / c - d_m \sin \alpha / c)),$$

$$w_{r,n} = \exp(j2\pi f_n (R_0 / c - d_n \sin \alpha / c)).$$

Такой метод назван в [8] неадаптивным формированием ДН (non-adaptive beamformer).

Для обработки принятых сигналов в литературе представлены различные подходы, такие как структура многоканальной согласованной фильтрации, представленная в работах [9, 10], где каждая приемная группой антенна сопровождается несущих с согласованными фильтрами. В распространенном варианте согласованная фильтрация реализуется в каждом приемном элементе для каждой несущей частоты приходящих сигналов с последующим суммированием результатов по приемным элементам.

На рис. 6 представлены диаграммы направленности на прием при наличии фокусировки на угол прихода θ сигнала от цели и на дальность $R_0 = ct_0$, где t_0 – задержка сигнала при распространении в одну сторону. В данном примере $t_0 = kR Ts$, kR = 201.

Периодичность диаграммы направленности по дальности можно устранить использованием коротких импульсов. Полная фокусировка соответствует согласованной фильтрации суммарного сигнала В передатчика. ЭТОМ случае пик диаграммы направленности на прием точно соответствует заданным значениям дальности и угла.

Если фокусировка применяется только на передающем конце (рис. 7a), то пик ДН способен перемещаться лишь по дальности. Фокусировка только на приемном конце (рис. 7δ) перемещает пик на требуемый угол, однако дальность при этом существенно искажается.

Рис. 6. Диаграммы направленности на прием: *a* – при фокусировке на угол $\theta = 0^{\circ}$; *б* – при фокусировке на угол $\theta = -30^{\circ}$

а

df=40000000 Hz ALFA = -30 kR = 201

Рис. 7. Диаграммы направленности на прием: a – при фокусировке по углу θ = -30° только в передатчике; δ – при фокусировке только в приемнике

V. ЗАКЛЮЧЕНИЕ

Рассмотрены амплитудные диаграммы направленности линейной антенной решетки с линейно возрастающим частотным планом.

Согласованная фильтрация суммарного сигнала приводит к равномерной по углу ДН на передачу. Полная фокусировка на передачу и на прием дает заданное положение пика результирующей диаграммы направленности.

Список литературы

- Antonik P., Wicks M.C., Griffiths H.D., Baker C.J. "Frequency diverse array radars," // in Proc. IEEE Radar Conf., Verona, NY, USA, Apr., pp. 215–217, 2006.
- [2] Antonik P., Wicks M.C., Griffiths H.D., Baker C.J. "Multi-Mission Multi-Mode Waveform Diversity", // Proc. 2006 IEEE Radar Conference, Verona, NY, 24-27 April 2006.
- [3] Воробьев Н.В., Грязнов В.А. "Многочастотные антенные решетки для формирования импульсных сигналов," // Радиотехника (Журнал в журнале), вып. 26(11), с.107-108, 1997.
- [4] Antonik P. An Investigation of a Frequency Diverse Array. PhD thesis. University College London. 2009.
- [5] Gui R., Wang W.-Q., Cui C., So H.C. "Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis," // IEEE Transactions on Signal Processing, vol. 66(1), pp. 200–214, 2018.

- [6] M. Tan, L. Bao, H. Zhu, W. Song, X. Wan, "Range-angle-dependent beamforming for FDA radar with Hamming interelement spacing and sinusoidal multicarrier approach," // AIP Advances 13, 015003, 2023. doi: 10.1063/5.0128079
- [7] Н.В. Воробьев, В.А. Грязнов, И.Н. Воробьев, С.В. Ягольников, "Формирование сверхширокополосных импульсных сигналов многочастотными антенными решетками со случайным распределением частот сигналов по элементам апертуры," // Труды 4 Всероссийской конференции "Радиолокация и радиосвязь» - ИРЭ РАН, 2010.
- [8] W.-Q. Wang, H. Shao, J. Cai, "Range-Angle-Dependent Beamforming by Frequency Diverse Array Antenna. "International Journal of Antennas and Propagation," vol. 2012. Article ID 760489, 2012.
- [9] T. Mu, Y. Song, Zh. Wang. "Beampattern Synthesis for Frequency Diverse Array Based on Time-Modulated Double Parameters Approach," // Journal of Microwaves, Optoelectronics and Electromagnetic Applications, vol. 17(3), Sept, 2018. doi: http://dx.doi.org/10.1590/2179-10742018v17i31240 352.
- [10] W. Jia, A. Jakobsson, W.-Q. Wang, "Coherent FDA Receiver and Joint Range-Space-Time Processing," eess.SP, 2023. arXiv: 2306.00688v.