О результатах испытаний в целях утверждения типа комплекта шунтов токовых эталонных безреактивных ШЭ

С. А. Иванов, Д. В. Шавалдин, В. И. Шевцов

Всероссийский научно-исследовательский институт метрологии им Д. И. Менделеева

s.a.ivanov@vniim.ru

Аннотация. Проведены испытания в целях утверждения типа комплекта шунтов токовых эталонных безреактивных ШЭ.

Ключевые слова: комплект шунтов токовых эталонных безреактивных ШЭ, Федеральный информационный фонд по обеспечению единства измерений, испытания в целях утверждения типа, метрологические характеристики

I. Введение

Федеральном информационном обеспечению единства измерений под номером 89998-23 зарегистрирован комплект шунтов токовых эталонных безреактивных ШЭ, производства компании общество с ограниченной ответственностью «Научнопроизводственное предприятие МАРС-ЭНЕРГО», г. Санкт-Петербург. В связи с невозможностью поставки шунтов переменного тока Fluke A40B производства США, зарегистрированных под номером 51518-12 в ФИФ, из-за санкционного давления и необоснованно завышенной стоимости, НПП МАРС-ЭНЕРГО изготовило изделие, не уступающее по качеству и метрологическим характеристикам Fluke A40B, а ФГУП «ВНИИМ им. Д. И. Менделеева» провело исследования и испытания, в целях утверждения типа указанного комплекта шунтов в единичном исполнении [1].

II. Комплект шунтов токовых эталонных безреактивных IIIЭ

Комплект шунтов токовых эталонных безреактивных ШЭ (далее по тексту — шунты) предназначены для измерений силы переменного тока в диапазоне частот от $20~\Gamma$ ц до $100~\kappa$ Гц.

Комплект состоит из восьми шунтов ШЭ-0.02, ШЭ-0.1, ШЭ-0.5, ШЭ-1.0, ШЭ-2.5, ШЭ-5.0, ШЭ-10.0, ШЭ-50.0, которые отличаются друг от друга значениями номинального тока шунта.

Принцип действия шунтов основан на законе Ома: протекающий через шунт переменный ток вызывает падение напряжения на нем, которое измеряется либо термоэлектрическим преобразователем переменного напряжения, либо универсальным вольтметром.

Шунты представляют собой резистивные элементы с малым значением частотной погрешности, заключенные в корпуса с установленными на них электрическими

соединителями для подключения в цепь измеряемой силы тока и для измерения падения напряжения на шунте.

Шунты выполнены в виде коаксиальной конструкции, состоящей из 3-х плат круглой/квадратной формы, изготовленных из стеклотекстолита, и установленных между ними планок и резисторов по схеме параллельного включения.

Коаксиальная конструкция обеспечивает несколько параллельных путей прохождения тока по планкам, каждая из которых имеет свой резистивный элемент. Отдельные планки — печатные платы объединяются в цилиндрическую конструкцию для уменьшения внешних магнитных полей и формируют путь прохождения тока через шунт. Пути прохождения тока расположены симметрично для уменьшения взаимной индуктивности. Резистивные элементы включают от 1 до 8 дискретных высокоточных резисторов на каждую планку в зависимости от значения номинальной силы тока. Печатная плата токового входа имеет слой меди на обеих сторонах платы.

Печатные платы потенциального выхода — односторонние. Ток поступает в шунт через входной токовый разъём, протекает по одной стороне платы токового входа и далее через верхнюю сторону планки входит в резистор. Пройдя через резистор, ток возвращается в разъём по нижней стороне планки и по другой стороне печатной платы токового входа. Напряжение снимается с резистора через планку и две печатные платы и выводится на выходной разъём.

Параллельные пути прохождения тока, которые обеспечиваются печатной платой планки и концевыми платами, минимизируют взаимную индуктивность. Использование нескольких резисторов уменьшает скинэффект в резистивном элементе и обеспечивает высокую стабильность.

Входной ток подается через коаксиальный разъем, выходное напряжение снимается через аналогичный разъем со стороны монтажа резисторов [2].

Основные технические характеристики шунтов приведены в табл. 1.

Основные метрологические характеристики шунтов приведены в табл. 2.

ТАБЛИЦА І. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШУНТОВ

Наименование характеристики	Значение			
Условия эксплуатации:				
- диапазон температур окружающего воздуха, °С	от +20 до +26			
- относительная влажность окружающего воздуха, %, при 25 °C	до 80			
- атмосферное давление, кПа	от 70 до 106,7			
Габаритные размеры ($B \times III \times \Gamma$), мм, не более:				
- IIIĴ-0.02, IIIĴ-0.Î	70×70×130			
- IIIЭ-0.5, IIIЭ-1.0	115×115×175			
- ШЭ-2.5, ШЭ-5.0, ШЭ-10.0	205×205×270			
- IIIЭ-50.0	200×200×305			
Масса шунта, кг, не более:	3			
Средняя наработка до отказа, ч, не менее	30000			
Средний срок службы, лет	15			

ТАБЛИЦА II. ОСНОВНЫЕ МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ШУНТОВ

Обозначение	Номинальный ток шунта, І	Пределы допускаемой абсолютной погрешности, $\pm10^{\text{-6}}\cdot ext{K}\cdot ext{I}, ext{A}$							
шунтов		Значения коэффициента К при частоте							
		20 Гц	40 Гц	1 кГц	10 кГц	20 кГц	30 кГц	70 кГц	100 кГц
ШЭ-0.02	10 мА	36	-	36	36	-	36	100	150
	20 мА	36	-	36	36	-	36	100	150
ШЭ-0.1	50 mA	33	-	33	33	-	33	80	120
	100 мА	33	-	33	33	-	33	80	120
ШЭ-0.5	200 мА	-	36	36	36	36	-	-	-
	500 мА	-	37	37	37	37	-	-	-
ШЭ-1.0	1 A	-	37	37	38	38	-	-	-
ШЭ-2.5	2 A	-	37	37	40	40	-	-	-
ШЭ-5.0	5 A	-	41	41	42	46	-	-	-
ШЭ-10.0	10 A	-	47	47	70	75	-	-	-
ШЭ-50.0	20 A	-	53	53	65	75	-	-	-
	50 A	-	65	65	90	95	-	-	-

Общий вид шунтов представлен на рис. 1.

Рис. 1. Общий вид шунтов

Конструкция шунтов обеспечивает минимальное значение:

- паразитной индуктивности и емкости;
- взаимной индуктивности между цепями тока и напряжения;
- токов утечки и потерь;
- изменения сопротивления вследствие нагрева при протекании рабочего тока за счет естественного охлаждения и применения резисторов с малым температурным коэффициентом электрического сопротивления;
- влияния разброса частотных характеристик применяемых резисторов.

III. ЗАКЛЮЧЕНИЕ

По результатам положительных испытаний шунтов Управление метрологии Росстандарта, приняло решение о внесении комплекта шунтов в Федеральный информационный фонд по обеспечению единства измерений.

Список литературы

- [1] МИ 3650-22 ГСИ. Рекомендация по оформлению заявок, заявлений и прилагаемых к ним документам при утверждении типа средств измерений и внесении изменений в сведения о них, содержащиеся в федеральном информационном фонде по обеспечению единства измерений.
- [2] «Комплект шунтов токовых эталонных безреактивных ШЭ. Паспорт $H\Phi$ ЦР.411914.033ПС».