# Моделирование процесса распространения тепла в силовых модулях на основе карбида кремния

М. А. Мишнёв<sup>1</sup>, А. А. Соловьёв, О. С. Бохов, Н. А. Хиль<sup>2</sup>, С. А. Пологов<sup>3</sup>

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

<sup>1</sup>mamishnev@gmail.com, <sup>2</sup>khilnikita@rambler.ru, <sup>3</sup>pologov\_semen@mail.ru

Аннотация. Проведено исследование распределения тепла в структуре силового модуля с применением одностороннего охлаждения в виде керамики и алмазосодержащего теплоотвода. В качестве силовых элементов рассмотрены SiC-транзистор CPM2-1200-0040A и диод EPW4-1200-S010A. Для проведения моделирования использовался программный пакет COMSOL Multiphysics.

Ключевые слова: карбид кремния; моделирование распространения тепла; алмазный теплоотвод

### I. Введение

Полупроводниковый моно- и поликристаллический кремний (Si) остается на сегодняшний день основным материалом для производства силовых твердотельных электронных приборов в диапазоне среднего и высокого напряжений благодаря дешевизне, доступности сырья, наличию технологичности И освоенных промышленностью методов получения кристаллов. В области низкого напряжения кремниевая технология применяется, например, для изготовления силовых МОП и IGBT транзисторов с вертикальной структурой, однако кремниевая технология приближается к пределам производительности, обусловленным фундаментальными свойствами Si, и дальнейший прогресс только за счет перехода на другие, возможен широкозонные полупроводники, такие как нитрид галлия И карбид кремния. Приборы на базе широкозонных полупроводников обладают по сравнению с Si-приборами рядом преимуществ: высокими значениями напряжения пробоя, высокой теплопроводностью и более низким сопротивлением открытого канала в МОП-транзисторах. По сравнению с Si приборами GD-MOSFET, SJ-MOSFET, CoolMOS 4H-SiC сопротивление открытого канала MOIIтранзистора с экранированной вертикальной структурой с накопительным слоем ACCUFET примерно в пять раз меньше [1].

При сопоставимых номинальных значениях напряжения и тока SiC-приборы имеют гораздо меньшие размеры, чем их Si-аналоги. Удельное сопротивление в проводящем состоянии SiC-транзистора в 5 раз меньше, чем у Si IGBT [2-3]. Размеры SiC-транзисторов примерно в 4,4 раза меньше, чем у кремниевых аналогов. Уменьшение площади кристалла открывает возможность для увеличения удельной мощности силовых модулей. При тех же потерях мощности тепловой поток, идущий через нижнюю часть кристалла, резко возрастает с 100-250 до 1 кВт/см<sup>2</sup>. Высокий тепловой поток и малая теплоемкость создают проблемы с корпусированием и системой терморегулирования для силовых SiC-модулей.

Вместе с этим возникают проблемы при сборке силовых модулей, т.к. их конструкция и материалы оказывают существенное влияние на тепловые, электрические и механические характеристики. В связи с этим актуальной становится проблема эффективного охлаждения таких устройств, особенно в условиях повышенного тепловыделения.

Благодаря высокой теплопроводности алмаза в настоящее время более широкое применение находят алмазные теплоотводы [4]. Использование алмазных теплоотводов позволит значительно улучшить тепловые характеристики приборов силовой электроники.

С целью модернизации приборов силовой электроники было предложено провести моделирование процесса распространения тепла в силовых модулях на основе карбида кремния с керамическим теплоотводом и алмазным теплоотводом.

## II. РАСЧЁТ ЭЛЕКТРИЧЕСКИХ ПОТЕРЬ

Одним из главных источников теплового потока в силовых модулях является омический самонагрев. Общие потери (Рм) SiC-транзисторов с вертикальной структурой, используемых в качестве ключей в силовой преобразовательной технике, включают в себя потери проводимости *P*<sub>CM</sub> и потери на переключение *P*<sub>swM</sub>.

$$P_M = P_{CM} + P_{swM} \,. \tag{1}$$

Первые представляют собой значение мгновенных потерь, усредненных за период [5]:

$$P_{CM} = \frac{1}{T_{sw}} \int_{0}^{T_{SW}} p_{CM}(t) dt =$$

$$= \frac{1}{T_{sw}} \int_{0}^{T_{SW}} (R_{DSon} \cdot i_{D}^{2}(t)) dt = R_{DSon} \cdot I_{Drms}^{2},$$
(2)

где  $i_D$  – ток стока,  $T_{sw}$  – период переключения,  $R_{DSon}$  – сопротивление сток-исток в открытом состоянии,  $I_{Drms}$  – среднеквадратичное значение тока открытого состояния транзистора.

Для расчета фактического значения потерь проводимости следует учесть коэффициент заполнения транзистора, определяемый методом модуляции силового преобразователя. На практике в случае синусоидальной широтно-импульсной модуляции (ШИМ) коэффициент принимается равным 0,5. Как и в случае ШИМ со сдвигом фаз (как, например, в полноили полумостовых Н-конверторах на основе 2-уровневых автономных инверторов напряжения, работающих на активно-индуктивную нагрузку) без учета бестоковой паузы, необходимой для обеспечения ZVS (ZVS – численное значение величины, обратной скважности импульсов).

Потери МОП-транзисторов на переключение определяются энергиями включения транзистора без учета потерь на обратное восстановление, а также встроенного диода обратного тока  $Eo_{nM}$  и выключения транзистора  $Eo_{ffM}$ :

$$P_{swM} = (E_{onM} + E_{offM}) \cdot f_{sw}.$$
 (3)

$$\begin{split} E_{onM} &= \int_{0}^{tri+tfu} u_{DS} \cdot i_{D}(t) dt = \\ &= U_{DD} \cdot I_{Don} \cdot \frac{tri+tfu}{2} + Q_{rr} \cdot U_{DD}, \\ E_{offM} &= \int_{0}^{tru+tfu} u_{DS} \cdot i_{D}(t) dt = \\ &= U_{DD} \cdot I_{Doff} \cdot \frac{tri+tfu}{2}, \end{split}$$
(4)

где tri, tfu — время нарастания и спада мощности при включении, tru, tfi — время нарастания и спада мощности при выключении,  $u_{DS}$  —напряжение «сток-исток»,  $U_{DD}$  — максимальное значение напряжения,  $I_{Don}$ ,  $I_{Doff}$  — токи во время включения и выключения,  $Q_{rr}$  — заряд обратного восстановления.

Аналогично потери диода:

$$P_D = P_{CD} + P_{swD}.$$
 (5)

$$P_{CD} = u_{D0} \cdot I_{Fav} + R_D \cdot I_{Frms}^2,$$

$$P_{swD} = (E_{onD} + E_{offD}) \cdot f_{sw} \approx E_{onD} \cdot f_{sw},$$

$$E_{onD} = \int_0^{tri+tfu} u_D(t) \cdot i_F(t) dt = 0.25 \cdot Q_{rr} \cdot U_{DD} =$$

$$= U_{DD} \cdot I_{Don} \cdot \frac{tri+tfu}{2} + Q_{rr} \cdot U_{DD},$$
(6)

где  $i_F$  – прямой ток,  $I_{Fav}$  – импульсный ток,  $I^2_{Frms}$  – среднеквадратичное значение импульсного тока.

# III. НАГРЕВ СИЛОВОГО МОДУЛЯ

Для определения нагрева силового модуля используется уравнение теплопроводности:

$$\rho C_p \frac{\partial T}{\partial t} - k\Delta T = q \tag{7}$$

где k – коэффициент теплопроводности, T – температура, q – плотность теплового потока,  $\rho$  – плотность материала,  $C_P$  – теплоёмкость материала, t – время. Уравнение решалось численно в программном пакете COMSOL Multiphysics. Для решения использовались следующие начальные и граничные условия:

- Источником нагрева является поток тепла постоянной мощности, эквивалентный мощности потерь, выделяемой на силовых элементах в процессе работы электрической схемы.
- Тепловой поток приложен к границе кристаллподложка.
- Поверхность радиатора, контактирующая с атмосферой, является излучателем конвекционного типа с величиной излучения

10 Вт/м3К, что соответствует естественной конвекции с воздухом [6].

 Величина излучения остальных элементов структуры пренебрежимо мала благодаря покрытию из компаунда.

На рис. 1 показано поперечное сечение типичной структуры силового модуля. Сверху находятся SiCкристаллы, которые соединены с DBC-подложкой (Direct Bonded Copper – «прямо присоединенная медь») методом синтеринга (низкотемпературное спекание серебра). Спекание серебра (Ag) – метод создания бессвинцового соединения, обеспечивающий более высокие рабочие температуру, теплоэлектропроводность, чем у припойных паст. DBC действует как электрическая изоляция и состоит из трех слоев: двух медных слоев и керамической изоляционной подложки. Задача керамических подложек – изолировать токоведущие части модуля. Слой DBC прикреплен к основанию, который помогает снизить температуру до рабочего уровня.



Рис. 1. Структура силового модуля

Геометрические параметры слоёв структуры представлены в табл. 1. В качестве изоляционной подложки использовались керамика оксида алюминия и алмаза.

ТАБЛИЦА І. Размеры слоёв силового модуля

| Слой        | Длина (мм) | Ширина (мм) | Толщина (мм) |
|-------------|------------|-------------|--------------|
| Чип SiC     | 4.04       | 6.44        | 0.2          |
| Диод        | 2.26       | 2.26        | 0.37         |
| Ад паста    | 33         | 10          | 0.02         |
| Медь        | 20         | 20          | 0.4          |
| А12О3/Алмаз | 20         | 20          | 0.5          |

В работе рассматриваются силовой транзистор СРМ2-1200-0040А и диод ЕРW4-1200-S010А. Потери мощности для данных элементов из формул (1–6) составили 33,16 и 11,75 Вт соответственно. Расчёт потерь проводился для частоты  $f_{sw} = 10$  кГц.

Параметры материалов структуры, используемые в модели COMSOL, выбирались в соответствии с информацией, представленной в таблице данных, и данными, представленными в справочном модуле программного пакета. Параметры материалов для моделирования представлены в табл. 2.

ТАБЛИЦА II. Параметры материалов для моделирования

| Материал                       | р, Кг/м <sup>3</sup> | <i>k</i> , Вт/(м·К) | <i>С</i> , Дж/(кг·К) |
|--------------------------------|----------------------|---------------------|----------------------|
| Al радиатор                    | 2700                 | 238                 | 900                  |
| Cu                             | 8940                 | 400                 | 385                  |
| Al <sub>2</sub> O <sub>3</sub> | 3740                 | 18                  | 880                  |
| Ag                             | 10470                | 440                 | 235                  |
| SiC чип/диод                   | 3219                 | 490                 | 690                  |
| Алмаз                          | 3520                 | 2100                | 660                  |

Распределение тепла в силовом модуле представлено на рис. 2. Данный температурный градиент построен в режиме теплового равновесия, при котором тепловыделение и теплоотдача одинаковы. Как видно из рисунка, температура силовых элементов, являющихся основным источником тепла, намного выше, чем в других областях, что позволяет предположить, что область вокруг кристаллов может подвергаться высоким тепловым нагрузкам.



Рис. 2. Распределение температуры в силовом модуле

На рис. 3 представлены временные зависимости температуры нагрева элементов на подложках с керамикой и алмазом. Как видно из рисунка замена керамики оксида алюминия на алмаз позволяет снизить температуру транзистора и диода в установившемся режиме на 10 °C.



Рис. 3. Сравнение температуры нагрева для силовых элементов с разными подложками

Распределение температуры по структуре модуля представлено на рис. 4. Распределение измерялось от центра чипа по срезу до радиатора. Видно, что структура с керамической подложкой имеет перепад температур, в то время как алмаз практически полностью отводит тепло. Такое различие объясняется существенной разницей в теплопроводности материалов.



Рис. 4. Температурный профиль по срезу структуры для разных подложек

# IV. ЗАКЛЮЧЕНИЕ

В работе было проведено исследование распределения тепла материала алмаза при его внедрении в виде слоя в систему упаковки силового модуля. Результаты показали, что использование подложки с алмазом вместо классической керамической подложки приводит к улучшению распределения тепла между слоями и к общему снижению температуры на 15 %.

# Список литературы

- [1] Saddow S., Agarwal A. Advances in Silicon Carbide. Processing and applications / Artech house. 2004. pp. 73-170.
- [2] An Innovative Additively Manufactured Design Concept of a Dual-Sided Cooling System for SiC Automotive Inverters / Abramushkina E., Martin G., Sen A., Jaman S., Rasool H., Baghdadi M., Hegazy O. // IEEE Transactions On Power Electronics. 2024. Vol. 12. pp. 20454-20470.
- [3] Direct Integration of Optimized Phase-Change Heat Spreaders Into SiC Power Module for Thermal Performance Improvements Under High Heat Flux / Mu W., Wang L., Wang B. Zhang T., Yang F., Gan Y., Zhang H. // IEEE Transactions On Power Electronics. 2022. Vol. 37. № 5. pp. 5398-5410.
- [4] Ланин В. Алмазные теплоотводы для изделий электроники повышенной мощности // Силовая электроника. 2008. № 3. С. 120–124
- [5] Graovac D., Purschel M., Kiep A. MOSFET power losses calculation using the datasheet-parameters. Application Note. 2006. URL: https://application-notes.digchip.com/070/70-41484.pdf.
- [6] Edge E. Convective Heat Transfer Coefficients Table Chart. URL: https://www.engineersedge.com/heat\_transfer/convective\_heat\_ transfer\_coefficients\_13378.htm.