Расчёт констант сверхтонкой структуры в мюонных атомах золота и иридия

С. Д. Холмес¹, Ю. А. Демидов²

¹ Санкт-Петербургская школа физико-математических и компьютерных наук НИУ ВШЭ

² Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

iurii.demidov@gmail.com

Аннотация. В работе выполнен расчёт констант сверхтонкой структуры для низколежащих состояний мюонных атомов золота и иридия. В мюонных атомах поправки к константам сверхтонкой структуры связанные с изменениями в распределении заряда и намагниченности внутри атомного ядра чрезвычайно велики. В таких системах мюон находится в неэкранированном поле ядра, мюон-электронными взаимодействиями можно я пренебречь. Это позволяет выполнить расчёт констант сверхтонкой структуры с высокой точностью. Тогда отличие межлу экспериментально измеренными константами сверхтонкой структуры и рассчитанными теоретически можно объяснить вкладом ядерных эффектов и извлечь их из экспериментальных данных. Эти результаты полезны для понимания свойств атомных ялер.

Ключевые слова: мюонные атомы, сверхтонкая структура уровней, эффект Бора–Вайскопфа

I. Введение

Магнитные дипольные константы сверхтонкой структуры (СТС) зависят от распределения заряда и намагниченности внутри атомного ядра. В приближении точечного ядра отношение постоянных СТС двух изотопов равно отношению их g-факторов ($g_I = \mu/I\mu_N$, где µ и I – магнитный момент и спин ядра, µ_N – ядерный магнетон). Для ядер конечных размеров, необходимо учитывать распределение намагниченности и заряда по объёму ядра. Первая поправка называется магнитной (Бора-Вайскопфа), вторая - зарядовой (Брейта -Эти Розенталь). поправки нарушают пропорциональность между константами CTC И ядерными д-факторами, получило название что сверхтонкой магнитной аномалии (СМА). СМА может быть получена из экспериментальных данных. Таким образом, можно изучать свойства ядер короткоживущих изотопов.

СМА в изотопических рядах калия и золота достигает больших значений, из-за сингулярности в поправке Бора–Вайскопфа при стремлении ядерного g-фактора к нулю [1, 2]. В мюонных атомах ядерные эффекты дополнительно усилены. Эта работа направлена на оценку вклада поправок Бора–Вайскопфа в константы сверхтонкой структуры мюонных атомов иридия и золота. Захват отрицательно заряженных мюонов атомами приводит к атомному каскаду. Этот процесс может экспериментально детектироваться с высокой точностью. Таким образом, константы сверхтонкой структуры для низколежащих мюоных состояний измерены экспериментально.

Мюон имеют массу $m_{\mu} = 206.7682830(46)$ m_e . Благодаря этому мюон находится в неэкранированном поле ядра. При этом мюон-электронным взаимодействием можно пренебречь по сравнению с взаимодействием мюона с ядром. В этом случае применимо водородоподобное приближение.

Взаимодействие мюона с ядром приводит к сверхтонкому расщеплению спектральных линий ΔE , которое выражается формулой:

$$\Delta E = A[F(F+1) - I(I+1)j(j+1)]/2.$$

Здесь А – магнитная дипольная константа сверхтонкой структуры, F – полный момент атома, I – спин ядра, j – полный момент мюона. Константа A сильно зависит от свойств ядра: его спина и магнитного момента µ. Эти свойства сильно меняются для различных изотопов, кроме того с увеличением числа нейтронов постепенно растёт радиус ядра. Поэтому в выражении для константы сверхтонкой структуры важно разделить атомные и ядерные параметры. В общем виде это выражение может быть записано в следующей форме [3]:

$$A = gA_0(1 - \delta)(1 - \epsilon).$$

Здесь g – ядерный g-фактор, A₀ – магнитная дипольная константа сверхтонкой структуры для точечного ядра, δ – поправка на конечное распределение заряда ядра (Брейта-Розенталь), є – поправка на распределение ядерной намагниченности (Бора-Вайскопфа). Параметр А₀ один и тот же для всех изотопов. Для мюонных атомов выражение для А₀ известно в аналитическом виде [3]. Поправки δ и ε можно вычислить, изменяя радиус ядра. При расчёте поправки Бора-Вайскопфа распределение необходимо учесть ядерной намагниченности, которое зависит OT валентной конфигурации нуклонов. Мы представляем поправку Бора–Вайскопфа в виде произведения [4, 5]: $\varepsilon = \varepsilon_{at} d_{nuc}$. При переходе от одного изотопа к другому ядерный множитель d_{nuc} может сильно меняться. Равномерному распределению ядерной намагниченности соответствует $d_{nuc} = 1; d_{nuc} = 0$ соответствует точечному магнитному диполю в центре ядра. В некоторых случаях ядерный множитель может быть вычислен рамках В одночастичной ядерной модели [1]:

$$d_{nuc} = 1 - 0.38 [1 - (1 + \zeta) \sigma g_S / Ig_I].$$

Работа выполнена при финансовой поддержке РНФ, проект № 23-22-00079

Здесь ζ – так называемый параметр спиновой нечетной частицы на направление I. В данной работе мы рассмотрим изотопы иридия и золота с одним валентным протоном в состоянии $d_{3/2}$. В этом случае $\sigma = -0.3$, $\zeta = 1.0$. Такие изотопы характеризуются небольшими ядерными g-факторами и, следовательно, большими поправками Бора-Вайскопфа, которые ещё более возрастают в Для мюонных атомах. оценки погрешности выполненных расчётов удобно рассмотреть изотопы ¹⁹¹т и ¹⁹³т Ir, в которых валентный протон находится в состоянии $d_{5/2}$. Эта конфигурация соответствует $\sigma = 0.5$, $\zeta = 2/7.$

В мюонных атомах параметры A₀ и δ могут быть рассчитаны с высокой точностью. Это в сочетании с экспериментальными данными может дать информацию о множителях d_{nuc}. Для удобства введём параметр A_{PD}:

$$A_{PD} = g_I A_0 (1 - \delta)$$

Константа сверхтонкой структуры A_{PD} соответствует приближению точечного магнитного диполя ($\varepsilon = 0$). В результатах, обсуждаемых ниже, мы не учитываем вклад поправок квантовой электродинамики (КЭД) в A_{PD} . Эффекты КЭД могут оказаться достаточно большими, поскольку мюон находится в неэкранизированном поле ядра. Теперь поправку Бора–Вайскопфа можно извлечь из экспериментально измеренной константы сверхтонкой структуры:

$$\varepsilon = 1 - A/A_{PD}$$
.

Вычислив атомную часть поправки Бора–Вайскопфа ϵ_{at} , мы получаем значение множителя d_{nuc} из экспериментальных данных.

II. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

А. Мюонный атом иридия

Измерены константы сверхтонкой структуры для 1s состояния нескольких изотопов мюонного иридия [7]. Результаты расчётов и сравнение с экспериментальными данными представлены в табл. I. Атомная часть поправок Бора-Вайскопфа слабо зависит от радиуса ядра, для всех рассмотренных изотопов иридия мы использовали. $\varepsilon_{at} = 0.48 \hat{8}$. Для изотопов ^{191m}Ir и ^{193m}Ir одночастичная ядерная модель предсказывает малые значения d_{nuc}. Это согласуется с экспериментальными значениями ядерных множителей. Ядерный множитель, извлечённый из данных, для ¹⁹¹Ir равен -4.7(12). Это значительно меньше предсказания одночастичной ядерной модели. Для изотопов золота мы наблюдали похожее поведение ядерных множителей. Поскольку значение ядерного множителя сильно зависит от величины ядерного g-фактора, то d_{nuc} (191Ir) следует сравнивать с d_{nuc} (¹⁹⁹Au) = -3.2(5), $g_I = 0.1799(5)$ и d_{nuc} (¹⁹⁷Au) = -5.1(5), g_I = 0.097164(6) [2]. Для проверки того, что d_{nuc} (¹⁹³Ir) = -2.5(8) так сильно отличается от d_{nuc}(191Ir) мы планируем выполнить расчёт констант сверхтонкой структуры для обычного атома иридия.

ГАБЛИЦА І.	Константы СТС для основного состояния
ИЗОТОПОВ М	ЮОННОГО ИРИДИЯ. ЕДИНИЦЫ ИЗМЕРЕНИЯ КОНСТАНТ
СТС: кэВ. З	ЭКСПЕРИМЕНТАЛЬНО ИЗМЕРЕННЫЕ КОНСТАНТЫ СТС
	ПРИВЕДЕНЫ ИЗ РАБОТЫ [7]

Изотоп	<i>g</i> _I	APD	Аэксп	dnuc	dnuc ^{эксп}
¹⁹¹ Ir	00.1001(4)	00.1341	0.440(80)	-7.7	-4.7(12)
^{191m} Ir	0.324(24)	0.4342	0.584(64)	-0.1	-0.7(3)
¹⁹³ Ir	0.1087(4)	0.1457	0.320(51)	-7.0	-2.5(8)
^{193m} Ir	0.356(16)	0.4771	0.426(54)	0.0	0.2(3)

А. Мюонный атом золота

В работах [2, 8] мы определили ядерный множитель для стабильного изотопа золота $d_{nuc} ({}^{197}Au) = -5.1(5)$ из анализа экспериментальных данных для обычного атома устранена Таким образом, главная золота. неопределённость в оценке величины поправки Бора-Вайскопфа. Используя это значение, мы выполнили расчёт констант СТС для низколежащих состояний мюонного атома золота. Эти данные приведены в табл. II. Экспериментальные данные о константах СТС мюонного золота взяты из работы [9]. Отметим, что разумное согласие экспериментальных и теоретических данных достигнуто только для состояния 2р_{3/2}. Мы приведённые считаем, что в работе [9] экспериментальные данные получены косвенно и должны быть пересмотрены.

ТАБЛИЦА II. Сравнение констант сверхтонкой структуры в кэв для низколежащих состояний мюонного ¹⁹⁷AU с экспериментальными данными [9].

Состояние	APD	E _{at}	A	Аэксп
$1s_{1/2}$	0.13739	0.5198	0.502(36)	0.307(53)
2s _{1/2}	0.07089	0.5178	0.258(18)	0.157
2p _{1/2}	0.03271	0.6830	0.147(12)	0.076
2p _{3/2}	0.01308	0.1185	0.021(1)	0.020

III. ЗАКЛЮЧЕНИЕ

дипольные константы сверхтонкой Магнитные структуры (СТС) очень чувствительны к изменениям в распределении заряда и намагниченности внутри атомного ядра. В мюонных атомах эти эффекты ещё более усилены. Так, в случае мюонного атома золота учёт поправки Бора-Вайскопфа для s и р_{1/2} состояний изменяет результат более чем в 2 раза. Возможность достаточно точного расчёта параметра А_{PD} делает мюонные атомы очень удобным инструментом для изучения свойств ядер. Однако точность экспериментальных данных не всегда позволяет это сделать.

В работе мы рассмотрели мюонные атомы иридия и золота. Для ряда изотопов из экспериментальных данных были извлечены ядерные вклады в поправки Бора-Вайскопфа. Полученные d_{пис} мы будем использовать при расчёте констант сверхтонкой структуры обычных нейтральных атомов.

БЛАГОДАРНОСТЬ

Авторы выражают признательность Козлову Михаилу Геннадьевичу и Ерохину Владимиру Анатольевичу за предоставление программ и оказанную помощь при проведении расчётов. Список литературы

- Demidov Yu.A., Kozlov M.G., Barzakh A.E. et al. Bohr-Weisskopf effect in the potassium isotopes // Phys. Rev. C, V. 107, P. 024307 (2023).
- [2] Demidov Yu.A., Konovalova E.A., Imanbaeva R.T. et al. Atomic calculations of the hyperfine-structure anomaly in gold // Phys. Rev. A, V. 10, P. 032824 (2021).
- [3] Shabaev V.M. Hyperfine structure of hydrogen-like ions // J. Phys. B, V. 27, P. 5825-5832 (1994).
- [4] Konovalova E.A., Kozlov M.G., Demidov Yu.A. et al. Calculation of thallium hyperfine anomaly // Rad. Applic., V. 2, P. 181–185 (2017).
- [5] Konovalova E.A., Demidov Yu.A., Kozlov M.G. et al. Calculation of francium hyperfine anomaly // Atoms, V. 6, P. 39 (2018).
- [6] Bohr A. Nuclear magnetic moments and atomic hyperfine structure // Phys. Rev., V. 81, P. 331 (1951).
- [7] Büttgenbach S. Magnetic hyperfine anomalies // Hyperfine Interact., V. 20, P. 1–64 (1984).
- [8] Barzakh A.E., Atanasov D., Andreyev A.N. et al. Hyperfine anomaly in gold and magnetic moments of Iⁿ= 11/2⁻ gold isomers // Phys. Rev. C, V. 101, P. 034308 (2020).
- [9] Powers R. J., Martin P., Milleret G. H. al. Muonic ¹⁹⁷Au: A test of the weak-coupling model // Nucl. Phys. A, V. 230, P. 413–444 (1974).