# Спектральная реконструкция гиперспектральных изображений с помощью интерполяционных методов

Д. Р. Шаривзянов\*, Д. Ю. Гоношилкин

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

\*sonderyx@ya.ru

Аннотация. В работе рассмотрены методы спектральной реконструкции гиперспектральных изображений с целью увеличения их спектрального разрешения. Рассмотрены различные интерполяционные методы для определения неизвестных значений спектральных отсчётов изображения. Проведена оценка качества интерполяции на основе метрик RMSE, PSNR, SSIM и SAM.

Ключевые слова: гиперспектральная система, гиперспектральное изображение, спектральная реконструкция, спектральное разрешение, интерполяция, сплайн

## I. Введение

Гиперспектральный анализ представляет собой технологию, объединяющую классические методы формирования изображений в сочетании со спектроскопией, что позволяет одновременно измерять пространственную и спектральную информацию об объектах. Данная технология активно используется в задачах распознавания и классификации объектов, которые невозможно различить с помощью традиционных цветных телевизионных камер.

Однако гиперспектральные системы с высоким спектральным разрешением, определяемым количеством спектральных каналов, И пространственным разрешением, характеризуемым количеством пикселей, обладают высокой стоимостью из-за высоких требований К технологическим процессам производства, что существенно ограничивает применение. В связи с этим одной из ключевых областей стала разработка пространственной и спектральной гиперспектральных изображений, направленных на увеличение их пространственного и спектрального которое может расширить разрешения, применения данной технологии, увеличивая качество гиперспектральных изображений (ГСИ) без повышения аппаратных требований к системе [1, 2, 3, 4].

Олним ключевых этапов обработки гиперспектральных изображений, влияющим на точность пространственной спектральной калибровка. реконструкции, является Корректная калибровка гиперспектральных данных необходима для измеренных значений физически обоснованным величинам, а также для минимизации спектральных искажений, что особенно критично при применении алгоритмов реконструкции.

# II. Калибровка гиперспектральных изображений

калибровки гиперспектральных изображений играет ключевую роль в обеспечении точности спектральных данных, что особенно важно при последующей интерполяции И реконструкции спектральных характеристик. Без предварительной коррекции спектральных смещений и других искажений применение методов восстановления спектрального разрешения может приводить к накоплению ошибок. Среди основных этапов калибровки можно выделить следующие:

- радиометрическая калибровка необходима для коррекции чувствительности фотоприёмника, устранения неравномерности освещения и конвертации измеренных значений в физические величины (например, коэффициент отражения);
- геометрическая калибровка необходима для коррекции оптических аберраций, таких как трапецеидальное искажение (keystone) и искажению типа улыбка (smile), вызванных не идеальностью оптической схемы прибора [5];
- спектральная калибровка необходима для коррекции спектрального смещения, вызванного неравномерной дискретизацией спектральных отсчётов из-за особенностей диспергирующей оптической схемы и механическим смещением узлов оптической схемы из-за допусков при изготовлении прибора [6].

Целью данной работы является сравнительный анализ различных алгоритмов интерполяции, применяемых при спектральной калибровке ГСИ. В частности, рассматриваются методы, которые могут быть использованы для спектральной реконструкции **у**величения спектрального разрешения путем восстановления спектральных значений промежуточных каналах. Основной спектральных задачей исследования является определение наиболее эффективного алгоритма интерполяции, обеспечивающего минимальные ошибки реконструкции ГСИ.

# III. Интерполяционные методы при спектральной реконструкции

Для спектральной реконструкции используются математические методы, позволяющие рассчитать неизвестные значения коэффициентов отражения объекта в интересуемых спектральных каналах на основе

информации в ближайших измеренных каналах. Для использования классических алгоритмов интерполяции необходимо 2 допущения:

- первое допущение о чётности всех функций, описывающих спектральные характеристики каждого спектрального канала;
- второе допущение об эквивалентности, в частности, равенстве полуширин (FWHM) всех функций, описывающих спектральные характеристики каждого спектрального канала.

Данные допущения позволяют соседним спектральным отсчётам быть изотропно коррелированными относительно друг друга, другими словами, влияние спектральных каналов n+1 и n-1 на канал n можно считать равновесным (рис. 1).

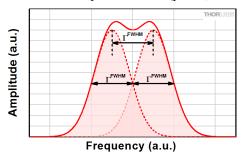



Рис. 1. Наложение чётных квазигауссовских спектральных характеристик двух соседних спектральных каналов [7], характерных для систем на основе призм

В контексте формирования гиперспектральных изображений помощью методов линейного сканирования, подразумевающих использование диспергирующих оптических элементов, таких как дифракционная решётка и призма, распределение интенсивности падающего света на пиксели фотоприёмника описывается дисперсионным уравнением дифракционной решётки и призмы соответственно, причём данные уравнения зачастую квазигауссовское распределение распределение кардинального синуса (sinc).

Интерполяционные методы классифицируются на глобальные и локальные в зависимости от количества используемых опорных точек.

Глобальные методы позволяют построить единую аппроксимирующую функцию, использующую доступные опорные точки. Глобальные методы обеспечивают гладкость интерполянта и минимизацию глобальной ошибки, что делает их эффективными для регулярных и гладких зависимостей. Однако их применение к реальным данным, особенно при больших объёмах, может приводить к чрезмерной сглаженности при малых степенях полиномиальной функции, или, наоборот, к численной неустойчивости и осцилляциям, как, например, эффект Рунге при полиномиальной интерполяции больших степеней [8]. В контексте гиперспектральных данных, где спектральные характеристики объектов могут быть немонотонными и содержать резкие изменения и выбросы, обусловленные, в том числе, спектральным поглощением среды при распространении света, глобальные методы зачастую не обеспечивают значительного качества интерполяции. Это снижает их практическую применимость для решения поставленной задачи.

Локальные метолы. напротив. используют ограниченное число ближайших опорных точек при вычислении значения в интерполируемой точке. Это позволяет лучше адаптироваться к особенностям данных, что особенно важно при анализе сложных и нестационарных спектральных зависимостей. Локальные методы позволяют сохранить физическую достоверность спектральной формы, учитывая резкие изменения или плавные переходы между соседними диапазонами длин волн. Несмотря на возможные такие как разрывы гладкости недостатки, повышенная чувствительность к шуму, локальные методы обладают большей релевантностью для решения поставленной задачи.

#### IV. Эксперимент

Для нахождения оптимального алгоритма интерполяции был проведён эксперимент, методика которого указана на рис. 2. Исходными данными являются 4 ГСИ тестовых объектов (рис. 3), полученных с помощью гиперспектральной камеры Specim FX10. Дискретизация спектральных каналов используемой камеры является квазиравномерной и, для упрощения расчётов, считается равномерной.



Рис. 2. Методика эксперимента



Рис. 3. Тестируемые объекты

Первым этапом эксперимента является децимация спектральных каналов эталонного изображения с помощью удаления каждого чётного спектрального канала. Вторым этапом является расчёт прореженных значений с помощью различных интерполяционных методов — было выбрано 14 различных методов, представленных на рис. 4.

Третий этап представляет собой расчёт ошибок – отклонения предсказанных значений от эталонных. В качестве метрик ошибок были выбраны:

- root mean square error (RMSE) среднеквадратическое отклонение;
- peak signal-to-noise ratio (PSNR) пиковое отношение сигнала к шуму;

- structural similarity index measure (SSIM) индекс структурного сходства;
- spectral angle mapper (SAM) метод сопоставления спектральных углов.

На основе рассчитанных ошибок для каждого тестируемого ГСИ и для каждого интерполяционного метода были составлены табл. 1—4.

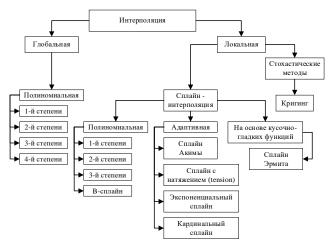



Рис. 4. Типология используемых интерполяционных методов

#### ТАБЛИЦА I. БАКТЕРИИ

| Метод                         | RMSE   | PSNR  | SSIM   | SAM    | Время<br>расчёта,<br>сек |
|-------------------------------|--------|-------|--------|--------|--------------------------|
| Полиномиальный<br>1-й степени | 243,93 | 24,50 | 0,5165 | 0,3220 | 52                       |
| Полиномиальный<br>2-й степени | 71,05  | 35,21 | 0,6147 | 0,0909 | 39                       |
| Полиномиальный<br>3-й степени | 69,12  | 35,45 | 0,6251 | 0,0880 | 40                       |
| Полиномиальный<br>4-й степени | 27,91  | 43,33 | 0,6589 | 0,0378 | 38                       |
| Сплайн 1-й<br>степени         | 6,92   | 55,44 | 0,8338 | 0,0128 | 17                       |
| Сплайн 2-й<br>степени         | 69,92  | 35,35 | 0,6259 | 0,0941 | 176                      |
| Сплайн 3-й<br>степени         | 6,86   | 55,51 | 0,8254 | 0,0132 | 90                       |
| В-Сплайн                      | 29,44  | 42,87 | 0,6704 | 0,0481 | 216                      |
| Сплайн Акимы                  | 6,70   | 55,72 | 0,8308 | 0,0126 | 43                       |
| Сплайн с<br>натяжением        | 6,64   | 55,80 | 0,8263 | 0,0128 | 143                      |
| Экспоненциальный<br>сплайн    | 6,86   | 55,52 | 0,8255 | 0,0132 | 128                      |
| Кардинальный<br>сплайн        | 6,77   | 55,63 | 0,8253 | 0,0130 | 274                      |
| Сплайн Эрмита                 | 6,79   | 55,60 | 0,8305 | 0,0127 | 49                       |
| Кригинг                       | 22,8   | 45,09 | 0,6797 | 0,0328 | 11281                    |

# ТАБЛИЦА II. БЕРЕСТА

| Метод              | RMSE  | PSNR  | SSIM   | SAM    | Время<br>расчёта,<br>сек |
|--------------------|-------|-------|--------|--------|--------------------------|
| Полиномиальный 1-  | 595,8 | 16,74 | 0,7843 | 0,2650 | 60                       |
| й степени          |       |       |        |        |                          |
| Полиномиальный 2-  | 317,3 | 22,21 | 0,8389 | 0,1286 | 62                       |
| й степени          |       |       |        |        |                          |
| Полиномиальный 3-  | 238,2 | 24,71 | 0,8743 | 0,1031 | 62                       |
| й степени          |       |       |        |        |                          |
| Полиномиальный 4-  | 229,7 | 25,02 | 0,8852 | 0,0997 | 64                       |
| й степени          |       |       |        |        |                          |
| Сплайн 1-й степени | 20,0  | 46,23 | 0,9579 | 0,0093 | 28                       |
| Сплайн 2-й степени | 235,4 | 24,81 | 0,8775 | 0,1022 | 292                      |
| Сплайн 3-й степени | 14,6  | 48,96 | 0,9535 | 0,0069 | 151                      |

|                            |       |       |        |        | Время<br>расчёта, |
|----------------------------|-------|-------|--------|--------|-------------------|
| Метод                      | RMSE  | PSNR  | SSIM   | SAM    | сек               |
| В-Сплайн                   | 221,8 | 25,32 | 0,8944 | 0,0964 | 359               |
| Сплайн Акимы               | 16,7  | 47,77 | 0,9559 | 0,0079 | 71                |
| Сплайн с<br>натяжением     | 14,4  | 49,09 | 0,9544 | 0,0068 | 238               |
| Экспоненциальный<br>сплайн | 14,6  | 48,94 | 0,9536 | 0,0069 | 214               |
| Кардинальный<br>сплайн     | 16,0  | 48,19 | 0,9538 | 0,0075 | 454               |
| Сплайн Эрмита              | 17,6  | 47,31 | 0,9559 | 0,0083 | 82                |
| Кригинг                    | 49,7  | 38,33 | 0,9271 | 0,0231 | 27508             |

## ТАБЛИЦА III. ДРЕВНЯЯ РУКОПИСЬ

| Метод                      | RMSE  | PSNR  | SSIM   | SAM    | Время<br>расчёта,<br>сек |
|----------------------------|-------|-------|--------|--------|--------------------------|
| Полиномиальный 1-й степени | 513,3 | 18,04 | 0,7233 | 0,3075 | 17                       |
| Полиномиальный 2-й степени | 192,0 | 26,58 | 0,7884 | 0,1346 | 17                       |
| Полиномиальный 3-й степени | 159,3 | 28,20 | 0,8370 | 0,1104 | 17                       |
| Полиномиальный 4-й степени | 152,8 | 28,56 | 0,8575 | 0,1048 | 18                       |
| Сплайн 1-й степени         | 15,7  | 48,35 | 0,9420 | 0,0115 | 7                        |
| Сплайн 2-й степени         | 162,0 | 28,06 | 0,8375 | 0,1144 | 82                       |
| Сплайн 3-й степени         | 11,3  | 51,21 | 0,9374 | 0,0091 | 42                       |
| В-Сплайн                   | 153,5 | 28,53 | 0,8610 | 0,1074 | 98                       |
| Сплайн Акимы               | 13,2  | 49,85 | 0,9403 | 0,0100 | 19                       |
| Сплайн с натяжением        | 11,2  | 51,28 | 0,9386 | 0,0089 | 68                       |
| Экспоненциальный<br>сплайн | 11,3  | 51,20 | 0,9373 | 0,0091 | 59                       |
| Кардинальный<br>сплайн     | 12,0  | 50,67 | 0,9382 | 0,0095 | 126                      |
| Сплайн Эрмита              | 153,5 | 28,53 | 0,8610 | 0,1074 | 98                       |
| Кригинг                    | 43,2  | 39,53 | 0,8969 | 0,0267 | 7569                     |

# ТАБЛИЦА IV. КАРТИНА

|                                |       |       |        |        | Время<br>расчёта, |
|--------------------------------|-------|-------|--------|--------|-------------------|
| Метод                          | RMSE  | PSNR  | SSIM   | SAM    | расчета,<br>сек   |
| Полиномиальный 1-<br>й степени | 249,8 | 24,29 | 0,4963 | 0,2621 | 10                |
| Полиномиальный 2-<br>й степени | 185,1 | 26,90 | 0,5504 | 0,1929 | 10                |
| Полиномиальный 3-<br>й степени | 135,9 | 29,58 | 0,5763 | 0,1557 | 11                |
| Полиномиальный 4-<br>й степени | 113,1 | 31,17 | 0,6027 | 0,1247 | 10                |
| Сплайн 1-й степени             | 6,8   | 55,61 | 0,8692 | 0,0104 | 6                 |
| Сплайн 2-й степени             | 125,7 | 30,26 | 0,5834 | 0,1505 | 46                |
| Сплайн 3-й степени             | 7,0   | 55,33 | 0,8638 | 0,0110 | 27                |
| В-Сплайн                       | 71,4  | 35,17 | 0,6339 | 0,0882 | 57                |
| Сплайн Акимы                   | 6,8   | 55,61 | 0,8680 | 0,0105 | 13                |
| Сплайн с<br>натяжением         | 6,9   | 55,42 | 0,8649 | 0,0108 | 38                |
| Экспоненциальный<br>сплайн     | 7,0   | 55,34 | 0,8639 | 0,0110 | 36                |
| Кардинальный<br>сплайн         | 7,0   | 55,34 | 0,8646 | 0,0110 | 120               |
| Сплайн Эрмита                  | 6,8   | 55,58 | 0,8677 | 0,0105 | 15                |
| Кригинг                        | 11,9  | 50,75 | 0,7035 | 0,0172 | 18080             |

# V. ЗАКЛЮЧЕНИЕ

На основе результатов можно сделать вывод, что оптимальными интерполяционными методами для задачи увеличения спектрального разрешения гиперспектрального изображения по критерию минимизации ошибок является сплайн с натяжением, однако он требует больших вычислительных затрат. По

критерию скорости вычисления с несущественным уменьшением качества оптимальными являются полиномиальный сплайн 1-й степени и сплайн Акимы.

## Список литературы

- [1] Zhou, H., Liu, Z., Huang, Z., Wang, X., Su, W., Zhang, Y. ICTH: Local-to-global spectral reconstruction network for heterosource hyperspectral images //Remote Sensing. 2024. T. 16. No. 18. C. 3377.
- [2] Fsian AN., Thomas J.B., Hardeberg J.Y., Gouton P. Spectral Reconstruction from RGB Imagery: A Potential Option for Infinite Spectral Data? // Sensors. 2024. T. 24. №. 11. C. 3666.
- [3] Lin Y. T., Finlayson G. D. Physically plausible spectral reconstruction from RGB images // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020. C. 532-533.

- [4] Cao, X., Lian, Y., Liu, Z., Li, J., Wang, K. Unsupervised spectral reconstruction from RGB images under two lighting conditions //Optics Letters. 2024. T. 49. №. 8. C. 1993-1996.
- [5] Smile and keystone / Specim technical note. URL: https://www.specim.com/smile-and-keystone/ (дата обращения 10.02.2025).
- [6] Automatic Image Enhancement and Unified Spectral Calibration / Specim technical note. URL: https://www.specim.com/aie-and-spectral-calibration/ (дата обращения 10.02.2025).
- [7] Fabry-Perot Interferometer Tutorial / Thorlabs technical resources. URL: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup\_id=9021 (дата обращения 10.02.2025).
- [8] Runge C. Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten // Zeitschrift für Mathematik und Physik. 1901. T. 46. №. 224-243. C. 20.