Спецификации сигналов LTE и 5G

И. Ф. Павлюк, В. О. Орехова

Санкт-Петербургский государственный университет телекоммуникаций им. проф. М.А. Бонч-Бруевича

pavlyuk.ignat@yandex.ru, or.victoria18@gmail.com

Аннотация. В настоящее время актуален контроль потока информации в сети обслуживания оператора связи. В рамках этой задачи необходимо создать инструмент для непрерывного анализа сигнала в эфире базовой станции. Использование нейронной сети семантической сегментации в совокупности с обучающим набором данных позволяет решить вопросы идентификации сигналов, быстрого реагирования на аварии оборудования и настройки базовых станций. Для реализации обучения нейросети возникает необходимость в генерации обучающих данных – спектрограмм.

Ключевые слова: LTE; 5G NR; RMC; TM NR; FRC; спектрограмма; генерация сигналов; нейросеть

I. Введение

Современные сети мобильной связи LTE и 5G NR предъявляют высокие требования к качеству передачи данных, надежности соединения и эффективности радиоресурсов. использования Для обеспечения соответствия оборудования и алгоритмов обработки сигналов стандартам 3GPP используются тестовые конфигурации каналов, которые позволяют воспроизводить различные сценарии работы сети в контролируемых условиях. Эти конфигурации применяются на этапах тестирования и сертификации телекоммуникационного оборудования, а также для оптимизации параметров сети.

В LTE к основным типам тестовых конфигураций относятся Reference Measurement Channel (RMC), Fixed Reference Channel (FRC) и Enhanced Test Model (E-TM). Эти модели используются для проверки производительности приемников и передатчиков, оценки устойчивости сигналов к помехам, а также тестирования сетевого оборудования в условиях нагрузки [1].

В сетях 5G NR аналогичные задачи решаются с помощью Fixed Reference Channel (FRC) и NR Test Model (NR-TM). Эти конфигурации позволяют анализировать характеристики спектра, проверять соответствие параметров радиоинтерфейса требованиям стандарта и оценивать влияние различных схем модуляции и кодирования на качество связи [2].

Использование тестовых конфигураций даёт возможность стандартизировать процессы проверки качества и упрощать разработку новых технологий мониторинга сети. В частности, собранные тестовые данные могут быть использованы для обучения нейросетей, что открывает перспективы автоматизированного контроля и адаптации сети в режиме реального времени.

II. LTE RMC

RMC (reference measurement channel) – это эталонные измерительные каналы, используемые для тестирования производительности LTE-систем, описывающие параметры физического уровня.

Для анализа LTE-сигнала с высокой степенью загрузки используются опорный измерительный канал R.31-4 [3] и сопоставленный с ним канал R.31-3A в табл. 1.

ТАБЛИЦА І.	ХАРАКТЕРИСТИКИ В.31-ЗА И В.31-4

Опорный канал		R.31-3A	R.31-4	
Пропускная	МΓн	1		
способность		10	20	
канала		10		
Вылеленные		РБ 349	РБ 499	
блоки ресурсов		распрелелены	распрелелены	
······································		в 5 полкадре	в 5 подкадре	
		РБ 049	РБ 099	
		распределены	распределены	
		в подкадрах	в подкадрах	
		1,2,3,4,6,7,8,9*	1,2,3,4,6,7,8,9*	
Выделенные				
субкадры на один		10	10	
радиокадр				
Модулция		64QAM	64QAM	
Скорость				
кодирования				
Подкадр	Биты	0.85	0.88	
1,2,3,4,6,7,8,9		0.85	0.88	
Подкадр 5	Биты	0.89	0.87	
Подкадр 0	Биты	0.90	0.90	
Информационный				
бит полезной				
нагрузки				
Подкадр	Биты	36606	75376	
1,2,3,4,6,7,8,9		30090	15510	
Подкадр 5	Биты	35160	71112	
	_			
Подкадр 0	Биты	36696	75376	
Количество		Если присутству	ует более	
олоков кода		одного кодового олока, к		
		каждому кодовому олоку		
		присоединяется		
		дополнительная		
		последовательность СКС из $L = 24$ бит		
Полизар	Биты	24 001.		
1.2.3.4.6.7.8.9	DITID	6	13	
Подкадр 5	Биты	6	12	
Подкадр 0	Биты	6	13	
Биты двоичного				
канала				
Подкадр	Биты	42200	96400	
1,2,3,4,6,7,8,9		43200	86400	
Подкадр 5	Биты	39744	82080	
Подкадр 0	Биты	40752	83952	
Количество слоев		2	2	
Максимальная	Мбит/с			
пропускная				
способность,		36.54	74.95	
усредненная по 1				
кадру				
Категории АТ		> 2	> 3	

^{*}Ограничение связано с особенностями разделения ресурсов между управляющей и пользовательской информацией, а также с особенностями режима работы.

Из табл. 1 видно, что конфигурации R.31-3A и R.31-4 отличаются шириной полосы пропускания. Вследствие этого R.31-4 обладает большим количеством ресурсных блоков и большим количеством бит полезной нагрузки. R.31-4 наиболее подходящий для поставленной задачи и обеспечивает требуемые условия в канале LTE.

RMC R.31-4 позволяет воспроизвести «нагруженный» LTE канал и проверить способность системы передавать большой поток данных в нисходящем канале. Используя E-UTRAN Test Model [4], создаётся тестовый канал LTE, параметры которого приведены в табл. 2.

DelayProfile	ETU	Тип профиля задержки, cooтветствующий Extended Typical Urban.
NRxAnts	4	Количество антенн приёмника
DopplerFreq	70 Гц	Доплеровская частота, отражающая мобильность пользователя.
MIMOCorrelation	Low	Уровень корреляции между антеннами в МІМО-системе
SamplingRate	30 МГц	Частота дискретизации, соответствующая 20 МГц LTE
Seed	1	Начальное значение для генератора случайных чисел в модели канала
InitTime	0	Начальное время моделирования канала
ModelType	GMEDS	Тип модели канала, выбранной для имитации затухания в канале E-UTRA (GMEDS – Generalized Model for Extended Delay Spread)
NTerms	16	Количество путей в модели канала, отражающих многолучевое распространение сигнала
NormalizePathGains	On	Флаг, указывающий на нормализацию коэффициентов затухания путей

ТАБЛИЦА II. Е-ТМ КОНФИГУРАЦИЯ

На рис. 1 приведена спектрограмма сигнала R.31-4. Для реализации изображения были воспроизведены условия передачи сигнала, а именно, многопоточное пространственное мультиплексирование (Spatial Multiplexing) и кодирование. Частота дискретизации установлена на уровне 30 МГц с полосой пропускания 20 МГц.

Рис. 1. Спектрограмма сигнала R.31-4

На спектрограмме отображен сигнал без искажений. Отображаются идеальные условия передачи, с четким и организованным распределением мощности.

Для реализации модели канала, которая представлена на рис. 2, использовался канал с профилем ETU (Extended Typical Urban), который охватывает типичные условия, встречающиеся в городских и пригородных районах с низким и средним уровнем мобильности. Модель канала была настроена на использование 4 антенн на прием, что соответствует параметрам канала в стандарте LTE для улучшения производительности системы.

Рис. 2. Спектрограмма сигнала R.31-4 с добавлением шума 20 дБ

При прохождении сигнала через канал с фейдингом, спектрограмма приобретает более сложный вид, с изменениями в распределении мощности, что отражает наличие многолучевого распространения и передачи сигнала с помехами.

Применение спектрограмм для визуализации изменений в сигнале показало, как различные условия передачи – такие как фейдинг и добавление шума могут влиять на качество сигнала.

III. 5G NR-TM и FRC

Для создания сигналов 5G NR были использованы конфигурации нисходящей линии связи NR-TM и FRC, предназначенные для тестирования соответствия параметров. Тестовые модели NR (NR-TM) определены для тестирования радиочастот базовой станции (БС), а фиксированные опорные каналы Fixed Reference Channel (FRC) – для тестирования входных сигналов пользовательского оборудования (UE).

Для создания тестовых моделей NR используются следующие параметры:

- Продолжительность, которая равна 1 фрейму (10 мс) для FDD и 2 фрейма для TDD (20 мс).
- Нумерация слотов от 0 до 10×2^µ-1, где µ значение, соответствующее расстоянию между поднесущими.
- Обычный циклический префикс (СР), который изменяется в зависимости от поднесущей и номера слота.
- Виртуальные блоки ресурсов (ВБР) логические единицы, связанные с физическими блоками

ресурсов (ФБР) и закрепленные за конкретной передачей.

N_{RB} – конфигурация полосы пропускания [5].

ТАБЛИЦА III.	Конфигурация полосы пропускания
	NRB для FR1

SCS	3	5	10	15	20	25	30
кГц	ΜГц						
	N _{RB}						
15	15	25	52	79	106	133	160
30	N/A	11	24	38	51	65	78
60	N/A	N/A	11	18	24	31	38

В табл. 3 показано, как количество ресурсных блоков (NRB – Number of Resource Blocks) изменяется в зависимости от Subcarrier Spacing, т.е. расстояния между поднесущими и от полосы пропускания. Исходя из представленных параметров, можно сделать вывод: чем шире полоса пропускания, тем большее количество ресурсных блоков можно использовать, поскольку большая полоса пропускания позволяет передавать больше данных одновременно.

Для определенных комбинаций SCS и полосы пропускания значения NRB не доступны (N/A). Например, SCS = 60 кГц не поддерживается для полос пропускания 3 и 5 МГц. Это указывает на ограничения в конфигурациях системы.

Для радиочастотного диапазона 450 МГц – 6 000 МГц (FR1) с временным разделением каналов (TDD) тестовые модели базируются на основе конфигурации нисходящей линии связи, как показано в табл. 4, с использованием TDD-UL-DL-ConfigCommon – конфигурация динамического дублирования с временным разделением (TDD) для восходящей (UL) и нисходящей (DL) линий связи и TDD-UL-DL-ConfigDedicated – конфигурация, которая применяется в режиме TDD для выделения временных ресурсов для передач по восходящему (UL) и нисходящему (DL) каналам связи, определяющая шаблон и распределение временных слотов для передач UL и DL внутри радиокадра [6].

ТАБЛИЦА IV. Конфигурации TDD для 5G-NR-TM

Tdd-UL-DL-Configuration	
Опорный интервал между	15 кГц
поднесущими	
Периодичность переключения	5 мс
DL/UL (за один период)	
Количество слотов нисходящей	1
линии связи	
Количество символов	0
нисходящей линии связи	
Количество слотов восходящей	0
линии связи	
Количество символов	0
восходящей линии связи	
Tdd-UL-DL-ConfigDedicated	
Количество символов	Для слота#1: 10
нисходящей линии связи	
Количество символов	Для слота#1: 2
восходящей линии связи	
Индекс слота	1
Количество символов	10
нисходящей линии связи	
Количество символов	2
восходящей линии связи	
Индекс слота	2,3
Символы	allUplink
Индекс слота	4
Символы	allDownlink

Нулевые значения для параметров, представленные в табл. 4 для конфигурации динамического дублирования с временным разделением (TDD) для восходящей (UL) и нисходящей (DL) линий связи, указывают на то, что в структуре TDD отсутствуют полностью выделенные слоты для DL или UL. Это означает, что в данной конфигурации используются гибкие слоты, т. е. динамическое распределение символов OFDM и управляющей информации внутри одного субкадра.

Рис. 3. Спектрограмма сигнала 5G NR-TM

Спектрограмма сигнала 5G NR-TM приведена на рис. 3. В данном примере используется тестовая модель NR-TM 1.1 с полосой пропускания 10 МГц, на несущей с шагом поднесущей 15 кГц.

Для создания FRC общего физического нисходящего канала (PDSCH) используются параметры, определенные в табл. 5 [7].

ТАБЛИЦА V. ОБЩИЕ ПАРАМЕТРЫ PDSCH ДЛЯ FRC

Размещен	ние в частотной		Full BW	
ооласти CORESE I Размещение во временной			2 OEDM	
Размещен	ние во временнои		2 ОГДМ СИМВОЛА В НАЧАЛЕ	
области (ORESET		каждого слота	
Тип отоб	ражения PDSCH		Тип А	
Индекс н	ачального символа		2	
PDSCH			2	
Количест	`BO			
последов	ательных символов		12	
PDSCH				
Объелин	ение PRB лля			
PDSCH		PRBs	2	
Объедин	ение PRB		false	
Тип DMF	RS		Тип 1	
Количест	во дополнительных		2	
DMRS			2	
CSI-RS	Индекс первой поднесущей в PRB, используемой для CSI-RS		0 для CSI-RS resource 1,2,3,4	
	OFDM-символы в PRB, используемые для CSI-RS		$l_0 = 6$ для CSI-RS resource 1 ид 3 $l_0 = 10$ для CSI-RS resource 2 и 4	
	Количество портов CSI-RS		1 для CSI-RS resource 1,2,3,4	
	Плотность		3 для CSI-RS resource	
	размещения CSI-RS		1,2,3,4	
	Периодичность передачи CSI-RS	Slots	15 кГц SCS: 20 для CSI- RS resource 1,2,3,4 30 кГц SCS: 40 для CSI- RS resource 1,2,3,4 60 кГц SCS: 80 для CSI- RS resource 1,2,3,4	

Смещение CSI-RS в слотах	Slots	15 кГц SCS: 0 для CSI-RS resource 1 и 2 1 для CSI-RS resource 3 и 4 30 кГц SCS: 1 для CSI-RS resource 1 и 2 2 для CSI-RS resource 3 и 4
-----------------------------	-------	---

В табл. 5 приведены основные характеристики канала FRC. Далее, следует подробно рассмотреть некоторые параметры, определяющие структуру фиксированного сигнала нисходящего канала, а именно, размещение в частотной области CORESET, определяющее ширину полосы частот, выделенную для набора ресурсов управления; индекс начального символа PDSCH, задающий номер OFDM-символа, с которого начинается передача PDSCH в слоте; динамическое объединение PRB, позволяющее адаптировать размер объединяемых PRB в зависимости от условий канала и требований к пропускной способности; DMRS типа 1 характеризуется более низкой плотностью размещения опорных символов во временной области по сравнению со 2 типом, поскольку он занимает меньше символов в каждом PRB, что оставляет больше ресурсов для передачи данных.

Рис. 4. Спектрограмма сигнала 5G NR-TM

Спектрограмма сигнала 5G FRC приведена на рис. 4. В данном примере используется полоса пропускания 10 МГц с расстоянием между поднесущими 15 кГц. FRC сконфигурирован таким образом, что PDSCH занимает большую часть сетки ресурсов, начиная с 3-го символа каждого слота и занимая 12 символов. CSI-RS передается в каждом слоте и занимает все блоки ресурсов по частоте. PDCCH занимает небольшую, но постоянную часть сетки ресурсов, в соответствии с допустимыми значениями, которые представлены в табл. 3. Важно отметить, что это конкретная конфигурация FRC, и другие FRC могут иметь совершенно другое расположение каналов.

IV. ЗАКЛЮЧЕНИЕ

В данной работе были проанализированы тестовые конфигурации каналов для сетей LTE и 5G NR, включая RMC, FRC и NR-TM, а также проведено их сравнение на спектрограмм. Исследование основе продемонстрировало, как в каналах RMC и E-TM различные условия передачи, такие как фейдинг и шум, влияют на качество сигнала, что подтверждает важность тестовых конфигураций для оценки характеристик радиоинтерфейса. Кроме того, сравнение конфигураций 5G NR (FRC и NR-TM) показало, что, несмотря на различия в параметрах, эти модели позволяют стандартизировать тестирование, обеспечивая объективную оценку работы сети.

Список литературы

- [1] 3GPP TS 36.101 V11.4.0 (2013-03) User Equipment (UE) radio transmission and reception (Release 17).
- [2] 3GPP TS 38.101-1 V18.8.0 (2024-12) User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (Release 18).
- [3] 3GPP TS 36.101 V11.4.0 (2013-03) Reference measurement channels for sustained downlink data rate provided by lower layers; User Equipment (UE) radio transmission and reception (Release 11).
- [4] 3GPP TS 36.141 V11.6.1 (2013-10) E-UTRA Test Models; Base Station (BS) conformance testing (Release 11).
- [5] 3GPP TS 38.104 V18.8.0 (2024-12) Transmission bandwidth configuration; Base Station (BS) radio transmission and reception (Release 18).
- [6] 3GPP TS 38.101-1 V18.8.0 (2024-12) FR1 test models; Base Station (BS) conformance testing Part 1: Conducted conformance testing (Release 18).
- [7] 3GPP TS 38.101-1 V19.0.0 (2024-12) DL reference measurement channels; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone (Release 19).