Исследование поверхностных акустических волн в слоистых структурах на основе сапфира

И. А. Балакай^{*}, А. С. Койгеров

Санкт-Петербургский государственный электротехнический университет «ЛЭТИ» им. В.И. Ульянова (Ленина)

^{*}iabalakay@stud.etu.ru

Аннотация. Рассмотрены тестовые 2,5D-ячейки слоистых структур на основе сапфира. Моделирование проводится методом конечных элементов в системе автоматизированного проектирования COMSOL Multiphysics. Получены собственные моды поверхностных акустических волн Рэлеевского типа и Лява. Изучены зависимости фазовых скоростей данных мод И коэффициента электромеханической связи от толщины пьезоэлектрического слоя для определённых срезов составляющих структуру материалов. Проведён анализ эффективного коэффициента электромеханической связи, рассчитываемого по графику адмиттанса в частотной области. Полученные данные находятся в соответствии с литературой и могут быть использованы при создании устройств на поверхностных акустических волнах.

Ключевые слова: canфир; метод конечных элементов; COMSOL; слоистые структуры; поверхностные акустические волны

I. Введение

В качестве основного элемента моделируемых в работе тестовых структур выступает сапфировая подложка. Сапфир не является пьезоэлектрическим материалом, но обладает высокой фазовой скоростью распространения поверхностных акустических волн (ПАВ) (например, в слоистой структуре AlN/сапфир 5700 м/с [1]), большей, чем в традиционных пьезоэлектриках, таких как танталат лития, ниобат лития и кварц. Благодаря чему использование сапфира в качестве среды распространения акустических волн перспективно в сфере создания устройств, работающих в гигагерцовом диапазоне, например фильтров и резонаторов [2].

Несмотря на то, что из всех известных на сегодняшний день непьезоэлектрических монокристаллов наибольшей скоростью ПАВ обладает алмаз (≈ 11000 м/с [3]), его производство осуществляется посредством дорогостоящих методов CVD (химического осаждения из паровой фазы) и НТНР (высокой температуры и высокого давления) [4]. Монокристаллы сапфира дешевле в производстве благодаря возможности применения методов с низкой себестоимостью, например EFG (метод Степанова) [5], а также их изготовление весьма распространено в России [6], что повышает доступность на рынке.

В работе исследуются моды Рэлеевского типа и Лява. Последние возбуждаются в слоистой структуре «сапфир/пьезоэлектрическая плёнка» по причине различия в фазовых скоростях поперечной волны в слоях структуры, когда скорость в пьезоэлектрической плёнке ниже, чем в подложке [7]. Волны Лява, используемые в ПАВ-сенсорах, демонстрируют наибольшую чувствительность среди всех типов ПАВ, а также обладают возможностью распространяться в жидких средах, предопределяя широкое применение в сенсорике, особенно в биосенсорах [8].

Выбранная 2,5D-геометрия моделируемой в COMSOL методом конечных элементов (МКЭ) ячейки отличается от 3D тем, что позволяет быстрее проводить расчёты. Во время расчётов не теряются решения для объёмной структуры (в отличие от 2D-геометрии), которые можно получить путём домножения на требуемый коэффициент (апертуру).

II. МЕТОД РАСЧЁТА И ПОСТРОЕНИЕ МОДЕЛИ

А. Метод расчёта

COMSOL Multifisics выполняет численный расчёт методом конечных элементов в узловых точках сетки модели по уравнениям пьезоакустики в дискретной форме. Движение частиц среды и изменение потенциала Φ при прохождении акустической волны можно описать уравнениями [9]:

$$\begin{cases} \rho \frac{\partial^2 u_j}{\partial t^2} = C_{ijkl} \frac{\partial^2 u_k}{\partial x_i \partial x_k} + e_{kij} \frac{\partial^2 \Phi}{\partial x_i \partial x_k} \\ e_{ikl} \frac{\partial^2 u_k}{\partial x_i \partial x_l} - \varepsilon_{ik} \frac{\partial^2 \Phi}{\partial x_i \partial x_k} = 0, \ i, j, k, l = 1, 2, 3 \end{cases}$$

$$(1)$$

где ρ – плотность материала; u – компоненты механического смещения в декартовой системе координат x; t – время; C – тензор модуля упругости; e – тензор пьезоэлектрических модулей; ε – тензор модуля диэлектрической проницаемости.

Каждый рассчитанный узел сетки будет обладать 4 степенями свободы: *u*₁, *u*₂, *u*₃, и Ф.

Фазовая скорость волны в структуре v связана с собственной частотой f и длиной волны λ (2), где v определяют как полусумму скоростей симметричной и антисимметричной мод [10].

$$\upsilon = f\lambda \,. \tag{2}$$

Коэффициент электромеханической связи k^2 (КЭМС) определяют по формуле [9]:

$$k^{2} = 2 \frac{\upsilon_{f} - \upsilon_{m}}{\upsilon_{f}},\tag{3}$$

где v_f, v_m – фазовые скорости на свободной и металлизированной поверхностях, соответственно.

При наличии нагрузки поверхности, выполненной не сплошной металлизацией, а периодическими электродами, эффективный КЭМС K^2 удобно определять, основываясь на частотной зависимости адмиттанса [9]:

$$K^{2} = \frac{\pi f_{r} / (2f_{a})}{tg\left(\pi f_{r} / (2f_{a})\right)},$$
(4)

где f_r и f_a – частоты резонанса и антирезонанса для конкретной акустической моды, соответственно.

В. Построение модели

Тестовая ячейка любой из 2 рассматриваемых структур состоит из определённого среза сапфировой подложки и пьезоэлектрической плёнки, поверх которой нанесены алюминиевые электроды. Внизу структуры расположен идеально согласованный слой. Геометрия структур (с плёнками AlN и ZnO), а также сетка элементов изображены на рис. 1. Размер ячейки в направлении движения волны составляет 1 λ . Электроды следуют с периодом $\lambda/2$. Сетка построена из расчёта 12 элементов на длину волны в приповерхностной области, но на глубине задана более грубо.

Рис. 1. Структуры исследуемых тестовых ячеек: (a) – сапфир с плёнкой AlN, (б) – сапфир с плёнкой ZnO, (в) – используемая при расчётах методом МКЭ сетка элементов

Параметры материалов для моделируемых тестовых ячеек (рис. 1) С-сапфир/(0001)AlN и R-сапфир/(1120) ZnO приведены для стандартной ориентации (0001) в табл. I, а требуемый срез определяется в COMSOL путём их пересчёта через углы Эйлера, которые задают поворотную систему координат.

ТАБЛИЦА I. ФИЗИЧЕСКИЕ КОНСТАНТЫ

Параметр	Символ	AlN [11]	ZnO*	Сапфир [11]
Плотность материала (кг/м ³)	ρ	3260	5680	3980
Упругие константы (10º Па)	C ₁₁	345	209,714	497
	C ₁₂	125	121,14	164
	C ₁₃	120	105,359	111
	C ₁₄	-	-	-23,5
	C ₃₃	395	211,194	498
	C44	118	42,3729	147
Пьезоэлектрические константы (К/м ²)	e ₁₅	-0,48	-0,480508	-
	e ₃₁	-0,58	-0,567005	-
	e ₃₃	1,55	1,32044	-
Относительные диэлектрические	ε ₁₁	8	8,5446	9,356
проницаемости	£33	9,5	10,204	11,525

параметры взяты из библиотеки материалов COMSOL

III. РАСЧЁТ ЯЧЕЕК В ОБЛАСТИ СОБСТВЕННЫХ ЧАСТОТ

В работе исследуются акустические моды Рэлея и Лява. Механические смещения, наблюдаемые при их прохождении, проиллюстрированы качественно на рис. 2.

Рис. 2. Визуализация поля механических смещений для следующих мод: фундаментальной Рэлея в структуре C-сапфир/(0001)AlN (a) и в структуре R-сапфир/ (1120) ZnO (б), фундаментальной Лява в структуре R-сапфир/ (1120) ZnO (в), 1 Лява в структуре Rсапфир/ (1120) ZnO (г) (красные области соответствуют максимальному смещению, синие – минимальному)

A. Структура C-canфup/(0001)AlN

С-сапфир, так же как и AlN, задаётся ориентацией (0001). Это стандартный срез, используемый в COMSOL по умолчанию и не требующий определения поворотной системы координат через углы Эйлера.

Рис. 3. Скорости распространения фундаментальной моды Рэлея в зависимости от нормированной на длину волны толщины плёнки AlN

Исследуем скорости распространения фундаментальной моды Рэлея (рис. 3) и определим КЭМС (рис. 4) в зависимости от нормированной на длину волны толщины плёнки AlN. Сравним на графике КЭМС k^2 с эффективным КЭМС K^2 из [12].

Рис. 4. КЭМС фундаментальной моды Рэлея в зависимости от нормированной на длину волны толщины плёнки AlN в сравнении с [12]

B. Cmpykmypa R-can ϕ up/(11 $\overline{2}$ 0)ZnO

R-сапфир задаётся в Comsol с помощью поворотной системы координат, определяемой углами Эйлера (90°, 57.6°, 150°). Аналогично, для плёнки ZnO среза (11 $\overline{2}$ 0) углы Эйлера имеют значения (α , 90°, 0°), где α может принимать произвольные значения от 0° до 90° [13].

Рассмотрим фундаментальную моду Лява. Определим угол α , при котором КЭМС будет максимален (рис. 5) и исследуем зависимости фазовой скорости и КЭМС от толщины плёнки ZnO при оптимальном значении α (рис. 6 и 7, соответственно). При расчёте зависимости КЭМС от α выберем толщину слоя плёнки $H_{ZnO}/\lambda = 32$ %, так как согласно [13], величина КЭМС будет максимальна.

Рис. 5. КЭМС фундаментальной моды Лява в зависимости от угла Эйлера α для поворотной системы координат плёнки ZnO

По рис. 5 можно заключить, что КЭМС фундаментальной моды Лява максимален при $\alpha = 0^{\circ}$, что находится в полном соответствии с [13].

Рис. 6. Скорости распространения фундаментальной моды Лява в зависимости от нормированной на длину волны толщины плёнки ZnO

Рис. 7. КЭМС фундаментальной моды Лява в зависимости от нормированной на длину волны толщины плёнки ZnO в сравнении с [13]

Таким образом, полученные данные сопоставимы со справочными значениями, что свидетельствует о корректности моделирования.

IV. РАСЧЁТ ЯЧЕЕК В ЧАСТОТНОМ ДИАПАЗОНЕ

А. Структура C-canфup/(0001)AlN

Для проведения анализа полной проводимости в частотной области выбрана толщина плёнки нитрида алюминия $H_{AIN}/\lambda = 55$ %, при которой, согласно рис. 3 и рис. 4, будет наблюдаться максимальная скорость фундаментальной моды Рэлея и достаточно высокое значение КЭМС. Исследование проводится при нормированной толщине алюминиевых электродов $h_{AI}/\lambda = 3$ %.

На рис. 8 приведена зависимость адмиттанса слоистой структуры от частоты f, нормированной на величину $f_f = 2,8171$ ГГц – частоту, соответствующую v_f данной моды (при $\lambda = 2$ мкм). Резонансных скачков адмиттанса на участках частот, соответствующих второй гармонике, моде Сезава, моде Лява, незаметно. Значит, их K^2 весьма мал. Рассчитанный по формуле (4) и графику (рис. 8) эффективный КЭМС волны Рэлея составил $K^2 = 0,221$ %, что близко к значению $k^2 = 0,263$ % (рис. 5).

Рис. 8. Адмиттанс структуры C-сапфир/(0001)AlN в зависимости от нормированной частоты. Наблюдается фундаментальная мода Рэлея

B. Структура R-canфир/ $(11\overline{2}0)$ ZnO

Исследование проводится при нормированной толщине Al электродов $h_{Al}/\lambda = 1$ % и толщине плёнки оксида цинка $H_{ZnO}/\lambda = 32\%$ при $\alpha = 0^{\circ}$ для максимизации значений K^2 фундаментальной и 1 мод Лява. На рис. 9 приведена зависимость адмиттанса слоистой структуры от *f*, нормированной на $f_f = 1,6982$ ГГц.

Рис. 9. Адмиттанс структуры R-сапфир/ (1120) ZnO в зависимости от нормированной частоты. Наблюдаются моды: 1 – фундаментальная Лява, 2 – фундаментальная Рэлея, 3 – первая Лява

ТАБЛИЦА II. Сопоставление расчётных и справочных параметров ПАВ

	Параметр	Структура*		
Мода		С-сапфир,	R-сапфир,	
		(0001)AlN 55 %,	(1120) ZnO 32 %	
		Al 3%	Al 1% при а = 0°	
Фунд. Рэлея	ν, м/с	5574; 5685 [12]	3658; -	
	$K^2, \%$	0,221; 0,24 [12]	0,013; -	
	$k^2, \%$	0,263; -	0,005; -	
Фунд. Лява	ν, м/с	-	3343; 3424 [13]	
	$K^2, \%$	-	4,387; -	
	$k^2, \%$	-	3,8; 3,86 [13]	
1 Лява	ν, м/с	-	5800; 5888 [13]	
	$K^2, \%$	-	1,113; -	
	$k^2, \%$	-	0,939; 0,95 [13]	

*(в процентах приведены значения толщины слоя относительно λ)

Для фундаментальной и 1 мод Лява K^2 составил 4,387 % и 1,113 %, соответственно. На рис. 7 можно увидеть, что величина k^2 несколько ниже эффективной.

Результаты, полученные в разделах III и IV, обобщены в виде табл. II, в которой наблюдается весьма низкий КЭМС фундаментальной моды Рэлея в структуре R-сапфир/(1120). Это объясняется тем, что угол а оптимально выбран для волны Лява. Для исследования волны Рэлея в данной ячейке следует подобрать другое подходящее значение α .

V. ЗАКЛЮЧЕНИЕ

В рамках проведённого исследования были изучены перспективные слоистые структуры, сформированные на основе сапфировых подложек с нанесёнными плёнками AlN или ZnO. Предложенные модельные ячейки позволяют анализировать параметры ПАВ, которые можно использовать для разработки высокочастотных устройств. изготовления Для устройств, функционирующих частотах 2 ГГц, свыше на рекомендуется использовать структуру с AlN, работающую на фундаментальной волне Рэлея, либо структуру с ZnO, использующую первую моду Лява, так как соответствующая скорость акустических волн превышает 5500 м/с. Кроме того, за счёт более низкого КЭМС структура с плёнкой нитрида алюминия лучше подходит для применений, связанных с получением узкой полосы пропускания в сравнении со структурой с плёнкой оксида цинка.

Список литературы

- Morgan D. Surface acoustic wave filters: With applications to electronic communications and signal processing. // Academic Press. 2010. P. 448.
- [2] Naumenko N. Multilayered structure as a novel material for surface acoustic wave devices: Physical insight. // ISBN. 2011. P. 978-953.
- [3] Ro R., Lee R., Lin Z. X., Sung C. C., Chiang Y. F., Wu S. Surface acoustic wave characteristics of a (100) ZnO/(100) AlN/diamond structure // Thin Solid Films. 2013, Vol. 529. P. 470-474.
- [4] Ren Y., Li X., Lv W., Dong H., Cheng Q., Yue F. et al. Recent progress in homoepitaxial single-crystal diamond growth via MPCVD // Journal of Materials Science: Materials in Electronics. 2024, Vol. 35. № 7. P. 525.
- [5] Klejch M., Němec M., Kubát J., Polák J. Preparation, properties and application of sapphire single-crystal fibers grown by the EFG method // EPJ Web of Conferences. EDP Sciences. 2013, Vol. 48. P. 00007.
- [6] Рыбкина Е.А. Рынок синтезированных монокристаллов (сапфиров): реалии и перспективы // Инновации. 2016. № 9 (215). С. 106-110.
- [7] Luo J. T. et al. Love-mode surface acoustic wave devices based on multilayers of TeO₂/ZnO (11 $\overline{2}$ 0)/Si (100) with high sensitivity and temperature stability //Ultrasonics. 2017, Vol. 75. P. 63-70.
- [8] Mandal D., Banerjee S. Surface acoustic wave (SAW) sensors: Physics, materials, and applications // Sensors. 2022, Vol. 22. № 3. P. 820.
- [9] Койгеров А.С. Применение метода конечных элементов для расчета параметров поверхностных акустических волн и устройств на их основе // Микроэлектроника. 2024. Т. 53. №2. С. 142-155.
- [10] Койгеров А.С., Балышева О.Л. Быстрый численный расчет параметров поверхностных акустических волн Рэлея для модели связанных мод // Известия высших учебных заведений России. Радиоэлектроника. 2022. Т. 25. № 5. С. 67-79.
- [11] Tsubouchi K., Sugai K., Mikoshiba N. AlN material constants evaluation and SAW properties on AlN/Al₂O₃ and AlN/Si // 1981 Ultrasonics Symposium. IEEE. 1981. P. 375-380
- [12] Uehara K., Yang C. M., Shibata T., Kim S. K. et al. Fabrication of 5-GHz-band SAW filter with atomically-flat-surface AlN on sapphire // IEEE Ultrasonics Symposium. 2004, Vol. 1. P. 203-206.
- [13] Wang Y., Zhang S.Y., Xu J. et al. Characteristics of surface acoustic waves in (1120) ZnO film/R-sapphire substrate structures // Science China Physics, Mechanics & Astronomy. 2018. Vol. 61. P. 1-8.